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Our simplest model for parabolic PDEs is the one-dimensional heat ) ) ) )
equation Parabolic PDEs show up in modeling of gas and fluid flow,
economic modeling (the Black-Scholes equation, with a negative
Uy = bl b), and diffusion processes — think pharmaceuticals spreading in
the body, epidemiological studies (animal-of-the-year flu?), etc.
u(0,x) = wp(x)
where ) o _
As with the one-way wave equation in the hyperbolic case, we can
® b >0 — the heat conductivity must be non-negative. learn a lot from studying the 1D heat equation and numerical
@ In the simplest case b is a constant, but we can allow solutions thereof for the parabolic case.
b(t,x) > 0.
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The 1D Heat Eq Uation Some Fourier “Magic” 1 Of 6 The 1D Heat Eq uation Dissipative Behavior 2 Of 6
. . . . —bw?t ‘ :
We Fourier transform (in the spatial coordinates) the 1D heat The factor e”*" shows that u(t,x) is obtained from up(x) by
equation (with constant b), and get a friendly ODE: damping the high-frequency content of wup.
R oo R Hence, the solution operator for a parabolic equation is a
uy = —bwu, u(0,w) = to(w). dissipative operator.
. : S By using the Fourier transform formula
The solution, in the Fourier domain, is given by y g
1 > :
~ b2t ~ - _ —iwy d
u(t,w)=-=e ug(w tp(w) = / € uo(y) dy
( ) ) 0( )v /o o
and by the Fourier inversion formula we get in the previous expression for u(t, x) we get
u(t X) _ L o eiwxe—bwzta\ (w) dw 1 oo bus? 1 oo .
) o - 0 y U(t,X) — / glwX g—bw t / eflwyuO(y) dy dw
v V2T J s V21 J -
in the physical domain. : . :
phy Next, we interchange the order of integration dy <> dw.
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The 1D Heat Eq uation Gaussian Integrals are Fun 3 of 6 The 1D Heat Eq uation Visualizing the Gaussian, G(t, x, y = 0) 4 of 6

u(t,x) =

1 oo 1 oo )
iw(x—y) o —bw?t
e e d d
\/47T /—oo <ﬁ/—oo w) UO(y) 4

1 /oo —(x— 2
- e y)</4bt uo(y) dy.
vV 4rbt J_~ (y) d
This expresses u(t, x) as a weighted average of ug, with a Gaussian
weight function
e—(x—y)?/4bt

G(t,x,y) =
( 2 V4rbt
It has the property that Vt > 0

el abt gy g,
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V 47Tbt /—oo
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Infinite Smoothness!
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Some Solutions

Given the representation

u(t,x) = e~ (x—y)?/4bt up(y) dy,

1 oo
V 47Tbt \/—oo
we make the following observations:

e u(t,x) is infinitely differentiable in t and x for ¢t > 0.
o If up(x) >0, then u(t,x) > 0.
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Figure: The exact solution(s) for the heat equation with initial condition 1 for 7
|x| <1 and 0 otherwise. We clearly see how the heat spreads out; this corresponds ﬁ
quite well with our physical intuition.

SAN DIEGO STATE
UNIVERSITY

Peter Blomgren, (blomgren.peterQgmail.com) Parabolic PDEs — (9/34) Peter Blomgren, (blomgren.peter@gmail.com) Parabolic PDEs — (10/34)
Parabolic PDEs Introduction: Model, the 1D Heat Equation Parabolic PDEs Introduction: Model, the 1D Heat Equation
Finite Difference Schemes Systems and Boundary Conditions Finite Difference Schemes Systems and Boundary Conditions
Parabolic Systems and Boundary Conditions Parabolic IVPs and Well-Posedness 1of3

A system of the form

u; = By + Aty + Cu + F(t,x),

where u is a vector, and A, B, and C are matrices is parabolic if

Real(\;(B)) > 0.

B does not have to be positive definite, nor symmetric, nor must
the eigenvalues be real; there are no restrictions on A and C.
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Recall:

Definition (Well-Posed 1VP)

The initial value problem for the first-order partial differential
equation Pu = 0 is well-posed if for any time T > 0, there exists a
constant Ct such that any solution u(t, x) satisfies

/ lu(t, x)|? dx < CT/ |u(0, x)|? dx,

— 00 — 00

for0<t<T.
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Parabolic IVPs and Well-Posedness 2 of 3 Parabolic IVPs and Well-Posedness 30of 3
The bound in the theorem is stronger than the one in the definition since
Theorem (Well-Posed Parabolic 1VPs) it gives a bound on the derivative of u with respect to x in addition
The initial value problem for the system to a bound on u. The bound on u, implies that the solution to the
system is infinitely differentiable for t > 0.
u; = B + Aux + Ca + F(t, x), The proof of the theorem is quite straight-forward using the Fourier
transform (4 Parseval's Theorem) — quick handwaving:
is well-posed, and actually a stronger estimate holds: For each R ] R
. U = (—w’B+iwA+C)
T > 0 there is a constant Ct such that
2 .
O(t. w — e—(w B+iwA+C)t nlw
_ 2 o 2 (t.0) o(w)
- -_ ~ _ 2 o~
| fteraxcs [ s P deds Gtw) < Ke— o)
—00 0 —00
oe) t [e’¢) 0 . 2 o0 . 2
<Cr U 60, )P dx + / / IF(s, %)|2 dx ds | latwrde < K [ fae) do
—00 0 J— —00 —o0
t ) o0
for0<t<T. / / WAi(s,w))P dwds < K?/ |Up(w)|? dw, t < T.
v 0 J—o0 > SO
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A parabolic system with d equations defined on a finite interval
requires d boundary conditions at each boundary, common forms
include

Tod(t,&) = by
T1u(t,8) + TLd(t, ) = b

where £ € 092, thus specifying the temperature, or the relation
between the flux and temperature at the boundary.

Note: To € R%*d T, T, e R(d—d)xd

E.g. a perfectly insulated refrigerator would have

ux(t, &) = 0.
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Boundary conditions are said to be well-posed if the solution of
the PDE depends continuously on the boundary data; expressed in
terms of the matrices Ty, T1, and B, we must require that the

d X d matrix

To
T— { B ]

is non-singular.

When Ty = Iy« 4 we have Dirichlet boundary conditions
(specified temperatures), and when T; = lyxq and T, = 0 we have
Neumann boundary conditions (specified temperature fluxes).
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A Note of “Square Roots” of Matrices

Parabolic PDEs
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Finite Difference Schemes for Parabolic Equations

@ A positive semi-definite matrix, M has a unique positive semi-definite square
root, R = M/2; a diagonalizable matrix has a square-root (defined for an
appropriate branch of the scalar square root) Ry = M1/2.

@ When M = XAX~1 °E? QAQT, either let R = QSQT, then (using the SVD)
R? = (QSQT)* = QSQTQSQT = SSQT = @S*QT = M,
or let Ry = XDX ™1 (using the eigenvalue/eigenvector decomposition)
R = (XDX~')? = XDX'XDX ™' = XDDX~! = XD*X ™! = M,

showing that

S = /\1/27 and therefore R = (?/\1/2QT7
or
D=AY2  and R,=XA/2x"1

@  other approaches.
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Our previous definitions, given in the context of finite difference
schemes for hyperbolic equations, of convergence, consistency,
stability, and accuracy were general enough that they apply
without modification to finite difference schemes for
parabolic equations.

We start by considering the forward-time central-space scheme for
the heat equation

n+1 n n _ n n
Vm — Vm —b Vm+1 2Vm + Vm-1

k h?

We get the amplification factor using our old trick v ~~ g™
g(fd)—1 b el —24 10
k h? '
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Conditional Stability of Forward-Time Central-Space [EXPLICIT] 1of2 Conditional Stability of Forward-Time Central-Space [ExpLICIT] 2 of 2
e o o 08 o 08 w00 e 03 Frosiet o wostny e 0ot o - FTCS |g( 0,b 4=0.200)| FTCS |g( 0,b 1:=0.400)| FTCS [g( 0,b 4=0.475)|
w0 - ) 12 © ™ 90 90 90
. N . N - . - . " - ‘ N " ) 120 1 60 120 1 60 120 1 60
. \ —~ s ‘ /Z
oo oo oo o | o 150 30 150 30 150 30
\ 05 05
10 30 30 20 30 S ™ 20 S ™ 20 \‘—
R 180 0 180 0 180 0
With pu = h% we get
. 2 0 210 330 210 330 210 330
g(0) =1 —4bpusin 5
240 300 240 300 240 300
R . . 270 270 270
d|SS|pat|ve of Ordler 2' FTCS |g( 0,b ;:=0.600)| FTCS [g( 0,b ;:=0.800)| FTCS |g( 0.b ;1=1.000)|
when 0 < bp < 3 * ° *
120 60 120 » 60 120 3 60
so that |g(#)| <1 as long as bu < % 150 ' % - 50 2 -
.. . . . . . . .. . . i !
Dissipation is desirable for parabolic equations since this implies that the numerical
. . . . . . . i
solution will become smoother as t increases, mimicking the behavior of the PDE. 180 0 0 180 0
The stability condition, expressed in terms p = h%' is generic for the parabolic
210 330 330 210 330
“universe” of finite difference schemes; p plays the role of A = % for hyperbolic N
roblems. 240 300 240 300 240 300
P . . 270 270 270 . >
S S
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FT-CS Solutions to the Heat Equation 1of3

On the next slide(s) we see solutions to (b = 1)

x€[-3,3], te[0, T]

U = Uxx,
1 |x|<1
0 |x|>1

We have h = %, and k = 0.005, so that 1 = 0.32 < 0.5. The

solutions are shown for 3 different time-intervals [0, 2], [0, 8], and
[0,16).

On slide 19 the solution is computed with boundary conditions
u(t,£3) = 0. On slide 20 the solution is computed with boundary
conditions which match the exact solution in an infinite domain
(this is quite artificial, but allows us to compare the solutions, see
slide 21.)

u(0,x) =

SAN DIFGO STATE
UNIVERSITY

Figure: Solutions to the heat equation
for ranges T € [0,2], T € [0,8], and
T € [0, 16].
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FT-CS Solutions to the Heat Equation 2 0of 3 FT-CS Solutions to the Heat Equation 30of 3
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[ 045} E
7 0.9 0.18} 4
. 0.8 o4 0.16f 1
P07 035 0.14f : 1
5 s 03 012}
-4 0.5 0251 0.1
3 0.4 0.2 0.08F
0.3 0.15, L
i 0.06
0.2 0.1 0.04f : ]
i
0.1 0.05F 0.02 — Computed r
0 o N : : : : N : : : = Exact
21 0 ! 28 -3 -2 - 0 1 2 3 -3 -2 -1 0 1 2 3
0.14/‘\
0.12F :
0.1f E
Figure: Comparison of the numeri- .08 i | Figure: Comparison of the computed
cal and exact solution in the “infinite- and exact solutions to the heat equation
domain” case; shown for T =2, T = 0.06r 1 forT=2, T=28,and T = 16.
8, and T = 16. 0.04f g
0021 - [— Computed ||
SAN DIEGO STATE o . L—— Exact SAN DIEGO STATE
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Unconditional Stability of Backward-Time Central-Space

[IMPLICIT] 2 of 2

orcss 05 casie o emmion sres ot et

o ammozn o ompezom

BTCS —g( 6,b ;:=0.200) BTCS —g( 6,b ;=0.400)

BTCS - g( 6,b =0.800)

% %0 %0
120 1 60 120 1 60 120 1 60
@ @ Q Q © 150 30 150 30 150 30
0.5,
h : b 180 [ 180 0 180 0
Backward-time central-space applied to uy = buyy + f gives:
21 0 210 330 210 33
Vn+1 B vn Vn+]_ 2vn+1 + vn+1 0 33 3 0
m m — b m+1 1 _"_ fn+1 240 300 240 300 240 300
k h2 m . 270 270 270
BTCS —g( 0,b 4=1.000) BTCS —g( 0,b #=2.000) BTCS - g( 6,b 1:=4.000)
920 90 90
.. . . 120 1 60 120 1 60 120 1 60
The amplification factor is
150 30 150 30 150 30
05 05 05
1
g(e) = . * 180 0 180 0 180 O 0
1+ 4bysin® (g)
210 330 210 330 210 330
This implicit scheme is order-(1,2) and is unconditionally stable.
240 300 240 300 240 300
When i > ¢ > 0, it is also dissipative of order 2. Sugprscasur
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Unconditional Stability of Crank-Nicolson [IMPLICIT] 1of2 Unconditional Stability of Crank-Nicolson [IMPLICIT] 2 of 2
—— —— % ” e, e - e e % 'w:‘s:” F—— Crank-Nicolson |g( 0,b 4=0.100)| Crank-Nicolson [g( 0,b 41=0.200)| Crank-Nicolson [g(  0,b x=0.400)|
920 90 90
? 120 1 60 120 1 60 120 1 60
@ (J @ > @ ) h 150 30 150 30 150 30
The Crank Nlcolson scheme applled to u; = quX + f is glven by 0 ° e ° e °
Vr,r11+1 _ V,’,l, B b Vr’;rill _ 2V,'777+1 + V,’:,tl V’[T;1+1 2V + V . 1 fn+1 o 210 330 210 330 210 330
k o 5 h2 h2 +§ m + mi- 240 300 240 300 240 300
270 270 270
Crank-Nicolson [g(  0,b ;:=0.800)| Crank-Nicolson [g(  0,b :=1.600)| Crank-Nicolson [g(  0,b :=3.200)|
90 90 90
The corresponding amplification factor is “ AN e AN o RSN
150 N 30 150 30 150
- 2 9 5 05
1—2busin® (5 Py
g(e) = 1 2b i2 (g) ' 180 0 180 0 180
+ 2bp sin (5)
The Crank-Nicolson scheme is implicit, unconditionally stable, and o < 20 %0 20
order-(2,2) accurate; unlike its hyperbolic version, it is not conservative. 20 w00 20 w0 20 w00
When p is constant it is dissipative of order 2. R v m m pkR
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[UNSTABLE] The Leapfrog Scheme 1of2 [UNSTABLE]  The Leapfrog Scheme 2 of 2
Leapfrog [g(  6,b 45=0.200)| Leapfrog [g(  0,b 41=0.400)| Leapfrog [g(  0,b u=0.475)|
120 ” 2 60 120 ” 3 60 120 ° 60
150 30 150 30 150 30
o £ m - m m B f f
The leapfrog scheme applied to us = buy + f is given by " ’ o \ ‘ " \ °
—1
Vrrr',+1 — V,’,71 —b V,’777+1 - 2Vr’711 + V,’;,_l + fr: 210 330 210 330 210 330
2k h?
The Corresponding ampliﬁcation polynomial is Leapfrog [g( 0,b 4=0.600)| Leapfrog [g(  0,b 4=0.800)| Leapfrog [g(  0,b #=1.000)|
0 120 4 60 120 60 120 6 60
2(0)? + 8g(6) by sin? (E) -1, " - ‘ . N
with roots . 150 ( o o
0\\? 0 \
0= 1+ (smsi (2)) s ().
We see that |g_(0)| > 1, for most values of 6, hence the leapfrog scheme is 240 — a0 20 — 300 20 — 200
unconditionally unstable. S STaTe S
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Unconditional Stability of The Du Fort-Frankel Scheme [EXPLICIT] 1of3 Unconditional Stability of The Du Fort-Frankel Scheme [EXPLICIT] 20of 3
The Du Fort-Frankel scheme is essentially the “fixed” leapfrog TR TR
scheme [It uses a time-based “averaging fix" (in the spatial derivative) similar to the @ % ‘ C%D (83
spatial average (in the time derivative) used in the hyperbolic setting FTCS ~~ A
LAX-FRIEDRICHS] B =
When 1 — 4b22 sin? (9) > 0, we get
n+1 n—1 n _ (yn+1 n—1 n
Vim =~ Vm —b Vm+1 (Vm + Vm ) + Vm—1 +fn
2k _ h2 2bp| cos(B)| 4+ 4/ 1 — 4b2 2 sin? () 2bp +1
0)| < < =1
: L L e (01 = 1+2bu T 1+2bp
The corresponding amplification polynomial is
and when 1 — 4b22sin? (6) < 0, we get
2
[1 + 2bu]g(9) - [4b:u cos(&)]g(@) - [1 - 2b/1J]7 e ()2 < (2bp cos())? + 4b?p? sin? (0) — 1 4p’u? —1 <1
8+ S =
. 1+ 2bu)? 4212 + 4bp + 1
with roots ( ) : g
Thus, this explicit scheme is unconditionally stable. The one caveat is that it is only
5 5 2 consistent if k/h tends to zero as h and k go to zero.
2bpcos(0) £ 1/1 — 4b?%p? sin“ (9) ) . . o . : )
(9) o The caveat is a generic property for finite difference schemes applied to parabolic ﬁ
g+ - 1+ 2bM : o problems, as expressed in the theorem on the following slide. et
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Convergence of Explicit Schemes

Du Fort-Frankl [g(  0,b ;:=0.200)| Du Fort-Frankl [g(  0,b 4:=0.400)| Du Fort-Frankl [g(  0,b p=0.475)|
90 90 90

120 60 120 60

240 300 240 300 240 300
270 270 270

Du Fort-Frankl [g(  0,b ;:=0.600)| Du Fort-Frankl [g(  6,b 4:=0.800)| Du Fort-Frankl [g(
90 90

120 60

6,b 4=1.000)|

120 60
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Theorem (Convergence of Explicit Schemes)

An explicit, consistent scheme for the parabolic system
'._lt - Bl_lxx + Al_lx + Cﬁ + F(t,X)

is convergent only if k/h tends to zero as k and h tend to zero.

Recall (for hyperbolic problems):

Theorem

There are no explicit, unconditionally stable, consistent finite
difference schemes for hyperbolic systems of partial differential
equations.
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