Numerical Solutions to PDEs

Lecture Notes #10 — Parabolic PDEs Overview — Exact Solutions and Boundary Conditions

Peter Blomgren, {blomgren.peter@gmail.com}

Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research Center San Diego State University San Diego, CA 92182-7720

http://terminus.sdsu.edu/

Spring 2018

Peter Blomgren, (blomgren.peter@gmail.com)

Outline

- Introduction: Model, the 1D Heat Equation
- Systems and Boundary Conditions
- Pinite Difference Schemes
 Mostly Old News

Peter Blomgren, (blomgren.peter@gmail.com)

11

Our simplest model for parabolic PDEs is the one-dimensional heat equation

$$u_t = b u_{xx}$$

(0, x) = $u_0(x)$

where

- $b \ge 0$ the heat conductivity must be non-negative.
- In the simplest case b is a constant, but we can allow $b(t,x) \ge 0$.

Parabolic PDEs show up in modeling of gas and fluid flow, economic modeling (the Black-Scholes equation, with a negative b), and diffusion processes — think pharmaceuticals spreading in the body, epidemiological studies (animal-of-the-year flu?), etc.

As with the one-way wave equation in the hyperbolic case, we can learn a lot from studying the 1D heat equation and numerical solutions thereof for the parabolic case.

Some Fourier "Magic"

1 of 6

We Fourier transform (in the spatial coordinates) the 1D heat equation (with constant b), and get a friendly ODE:

$$\widehat{u}_t = -b\omega^2 \widehat{u}, \quad \widehat{u}(0,\omega) = \widehat{u}_0(\omega).$$

The solution, in the Fourier domain, is given by

$$\widehat{u}(t,\omega)=e^{-b\omega^2 t}\,\widehat{u}_0(\omega),$$

and by the Fourier inversion formula we get

$$u(t,x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{i\omega x} e^{-b\omega^2 t} \hat{u}_0(\omega) d\omega,$$

in the physical domain.

SAN DIEGO STATE UNIVERSITY

Peter Blomgren, (blomgren.peter@gmail.com)

Dissipative Behavior

2 of 6

The factor $e^{-b\omega^2 t}$ shows that u(t, x) is obtained from $u_0(x)$ by damping the high-frequency content of u_0 .

Hence, the solution operator for a parabolic equation is a **dissipative operator**.

By using the Fourier transform formula

$$\widehat{u}_0(\omega) = rac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-i\omega y} u_0(y) \, dy$$

in the previous expression for u(t, x) we get

$$u(t,x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{i\omega x} e^{-b\omega^2 t} \left[\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-i\omega y} u_0(y) \, dy \right] \, d\omega$$

Next, we interchange the order of integration $dy \leftrightarrow d\omega$.

- (6/34)

Peter Blomgren, (blomgren.peter@gmail.com)

Introduction: Model, the 1D Heat Equation Systems and Boundary Conditions

Gaussian Integrals are Fun

$$u(t,x) = \frac{1}{\sqrt{4\pi}} \int_{-\infty}^{\infty} \left(\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{i\omega(x-y)} e^{-b\omega^2 t} d\omega \right) u_0(y) dy$$
$$= \frac{1}{\sqrt{4\pi bt}} \int_{-\infty}^{\infty} e^{-(x-y)^2/4bt} u_0(y) dy.$$

This expresses u(t, x) as a weighted average of u_0 , with a Gaussian weight function

$$G(t,x,y)=\frac{e^{-(x-y)^2/4bt}}{\sqrt{4\pi bt}}.$$

It has the property that $\forall t > 0$

$$\frac{1}{\sqrt{4\pi bt}}\int_{-\infty}^{\infty}e^{-(x-y)^2/4bt}\,dy=1.$$

Peter Blomgren, (blomgren.peter@gmail.com)

Introduction: Model, the 1D Heat Equation Systems and Boundary Conditions

The 1D Heat Equation

Visualizing the Gaussian, G(t, x, y = 0)

4 of 6

Peter Blomgren, (blomgren.peter@gmail.com)

Figure: The Gaussian weight function at time t = 0.001, 0.01, 0.1. (y = 0, b = 1 are fixed).

Thought Experiment: What happens as $t \searrow 0$?

Infinite Smoothness!

5 of 6

Given the representation

$$u(t,x) = \frac{1}{\sqrt{4\pi bt}} \int_{-\infty}^{\infty} e^{-(x-y)^2/4bt} u_0(y) dy,$$

we make the following observations:

- u(t,x) is infinitely differentiable in t and x for t > 0.
- If $u_0(x) \ge 0$, then $u(t,x) \ge 0$.

Introduction: Model, the 1D Heat Equation Systems and Boundary Conditions

The 1D Heat Equation

Some Solutions

6 of 6

Figure: The exact solution(s) for the heat equation with initial condition 1 for $|x| \le 1$ and 0 otherwise. We clearly see how the heat spreads out; this corresponds quite well with our physical intuition.

Peter Blomgren, blomgren.peter@gmail.com

Parabolic Systems and Boundary Conditions

A system of the form

$$\mathbf{\bar{u}}_t = B\mathbf{\bar{u}}_{xx} + A\mathbf{\bar{u}}_x + C\mathbf{\bar{u}} + F(t,x),$$

where $\mathbf{\bar{u}}$ is a vector, and A, B, and C are matrices is **parabolic** if

 $\operatorname{Real}(\lambda_i(B)) > 0.$

B does not have to be positive definite, nor symmetric, nor must the eigenvalues be real; there are no restrictions on A and C.

Recall:

Definition (Well-Posed IVP)

The initial value problem for the first-order partial differential equation Pu = 0 is well-posed if for any time $T \ge 0$, there exists a constant C_T such that any solution u(t, x) satisfies

$$\int_{-\infty}^{\infty} |u(t,x)|^2 dx \leq C_T \int_{-\infty}^{\infty} |u(0,x)|^2 dx,$$

for $0 \leq t \leq T$.

Theorem (Well-Posed Parabolic IVPs) The initial value problem for the system

$$\bar{\mathbf{u}}_t = B\bar{\mathbf{u}}_{xx} + A\bar{\mathbf{u}}_x + C\bar{\mathbf{u}} + F(t,x),$$

is well-posed, and actually a stronger estimate holds: For each T>0 there is a constant C_T such that

$$\int_{-\infty}^{\infty} |\mathbf{\bar{u}}(t,x)|^2 dx + \int_0^t \int_{-\infty}^{\infty} |\mathbf{\bar{u}}_x(s,x)|^2 dx ds$$
$$\leq C_T \left[\int_{-\infty}^{\infty} |\mathbf{\bar{u}}(0,x)|^2 dx + \int_0^t \int_{-\infty}^{\infty} |F(s,x)|^2 dx ds \right]$$

for $0 \leq t \leq T$.

Peter Blomgren, blomgren.peter@gmail.com

Parabolic PDEs

DIEGO STA

Parabolic IVPs and Well-Posedness

The bound in the theorem is stronger than the one in the definition since it gives a **bound on the derivative of** u with respect to x in addition to a bound on u. The bound on u_x implies that the solution to the system is infinitely differentiable for t > 0.

The proof of the theorem is quite straight-forward using the Fourier transform (+ Parseval's Theorem) — *quick handwaving:*

$$\begin{aligned} \widehat{u}_t &= (-\omega^2 B + i\omega A + C) \, \widehat{u} \\ \widehat{u}(t,\omega) &= e^{-(\omega^2 B + i\omega A + C)t} \, \widehat{u}_0(\omega) \\ |\widehat{u}(t,\omega)| &\leq K e^{(a-b\omega^2)t} \, |\widehat{u}_0(\omega)| \\ \int_{-\infty}^{\infty} |\widehat{u}(t,\omega)|^2 \, d\omega &\leq K_T \int_{-\infty}^{\infty} |\widehat{u}_0(\omega)|^2 \, d\omega \\ \int_0^t \int_{-\infty}^{\infty} \omega^2 |\widehat{u}(s,\omega)|^2 \, d\omega \, ds &\leq K_T^* \int_{-\infty}^{\infty} |\widehat{u}_0(\omega)|^2 \, d\omega, \ t \leq T. \end{aligned}$$

Peter Blomgren, blomgren.peter@gmail.com

Parabolic PDEs

SAN DIEGO STAT

Boundary Conditions for Parabolic Systems

A parabolic system with d equations defined on a finite interval requires d boundary conditions at **each boundary**, common forms include

$$T_0 \vec{u}(t,\xi) = \vec{b}_0$$

$$T_1 \vec{u}_x(t,\xi) + T_2 \vec{u}(t,\xi) = \vec{b}_1$$

where $\xi \in \partial \Omega$, thus specifying the temperature, or the relation between the flux and temperature at the boundary.

Note:
$$T_0 \in \mathbb{R}^{d_0 \times d}$$
, T_1 , $T_2 \in \mathbb{R}^{(d-d_0) \times d}$.

E.g. a perfectly insulated refrigerator would have

$$u_{x}(t,\xi)=0.$$

Boundary conditions are said to be **well-posed** if the solution of the PDE depends continuously on the boundary data; expressed in terms of the matrices T_0 , T_1 , and B, we must require that the $d \times d$ matrix

$$T = \left[\begin{array}{c} T_0 \\ T_1 B^{-1/2} \end{array} \right]$$

is non-singular.

When $T_0 = I_{d \times d}$ we have **Dirichlet boundary conditions** (specified temperatures), and when $T_1 = I_{d \times d}$ and $T_2 = 0$ we have **Neumann boundary conditions** (specified temperature fluxes).

A Note of "Square Roots" of Matrices

- A positive semi-definite matrix, M has a unique positive semi-definite square root, $R = M^{1/2}$; a diagonalizable matrix has a square-root (defined for an appropriate branch of the scalar square root) $R_2 = M^{1/2}$:
- When $M = X\Lambda X^{-1} \stackrel{\text{SPD}}{=} Q\Lambda Q^T$, either let $R = QSQ^T$, then (using the SVD)

$$R^{2} = (QSQ^{T})^{2} = QSQ^{T}QSQ^{T} = QSSQ^{T} = QS^{2}Q^{T} = M,$$

or let $R_2 = XDX^{-1}$ (using the eigenvalue/eigenvector decomposition)

$$R_2^2 = (XDX^{-1})^2 = XDX^{-1}XDX^{-1} = XDDX^{-1} = XD^2X^{-1} = M,$$

showing that

$$S = \Lambda^{1/2}$$
, and therefore $R = Q \Lambda^{1/2} Q^T$,

or

$$D = \Lambda^{1/2}$$
, and $R_2 = X \Lambda^{1/2} X^{-1}$

● ∃ other approaches.

SAN DIEGO STATE UNIVERSITY

Peter Blomgren, (blomgren.peter@gmail.com)

Finite Difference Schemes for Parabolic Equations

Our previous definitions, given in the context of finite difference schemes for hyperbolic equations, of convergence, consistency, stability, and accuracy were general enough that they **apply without modification to finite difference schemes for parabolic equations.**

We start by considering the forward-time central-space scheme for the heat equation

$$\frac{v_m^{n+1} - v_m^n}{k} = b \, \frac{v_{m+1}^n - 2v_m^n + v_{m-1}^n}{h^2}$$

We get the amplification factor using our old trick $v_m^n \rightsquigarrow g^n e^{im\theta}$

$$\frac{\mathsf{g}(\theta)-1}{k}=b\,\frac{e^{i\theta}-2+e^{-i\theta}}{h^2}.$$

Conditional Stability of Forward-Time Central-Space [EXPLICIT] 1 of 2

so that $|g(\theta)| \leq 1$ as long as $b\mu \leq \frac{1}{2}$.

Dissipation is desirable for parabolic equations since this implies that the numerical solution will become smoother as t increases, mimicking the behavior of the PDE.

The stability condition, expressed in terms $\mu = \frac{k}{h^2}$, is generic for the parabolic "universe" of finite difference schemes; μ plays the role of $\lambda = \frac{k}{h}$ for hyperbolic problems.

Mostly Old News

Conditional Stability of Forward-Time Central-Space [EXPLICIT] 2 of 2

Peter Blomgren, (blomgren.peter@gmail.com)

Parabolic PDEs

- (20/34)

Some Forward-Time Central-Space Solutions

On the next slide(s) we see solutions to (b = 1)

$$egin{array}{rcl} u_t &=& u_{xx}, & x\in [-3,3], \ t\in [0,T] \ u(0,x) &=& \left\{ egin{array}{cc} 1 & |x|\leq 1 \ 0 & |x|>1 \end{array}
ight. \end{array}$$

We have $h = \frac{1}{8}$, and k = 0.005, so that $\mu = 0.32 < 0.5$. The solutions are shown for 3 different time-intervals [0, 2], [0, 8], and [0, 16].

On slide 19 the solution is computed with boundary conditions $u(t, \pm 3) = 0$. On slide 20 the solution is computed with boundary conditions which match the exact solution in an infinite domain (this is quite artificial, but allows us to compare the solutions, see slide 21.)

Mostly Old News

FT-CS Solutions to the Heat Equation

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

SAN DIEGO STATE UNIVERSITY - (22/34)

Mostly Old News

FT-CS Solutions to the Heat Equation

Peter Blomgren, blomgren.peter@gmail.com

Figure: Comparison of the numerical and exact solution in the "infinite-domain" case; shown for T = 2, T = 8, and T = 16.

Mostly Old News

FT-CS Solutions to the Heat Equation

Figure: Comparison of the computed and exact solutions to the heat equation for T = 2, T = 8, and T = 16.

Unconditional Stability of Backward-Time Central-Space [IMPLICIT] 1 of 2

Backward-time central-space applied to $u_t = bu_{xx} + f$ gives:

$$\frac{v_m^{n+1}-v_m^n}{k}=b\,\frac{v_{m+1}^{n+1}-2v_m^{n+1}+v_{m-1}^{n+1}}{h^2}+f_m^{n+1}.$$

The amplification factor is

$$g(heta) = rac{1}{1+4b\mu\sin^2\left(rac{ heta}{2}
ight)}.$$

This implicit scheme is order-(1,2) and is unconditionally stable. When $\mu \ge c > 0$, it is also dissipative of order 2.

- (25/34)

Peter Blomgren, (blomgren.peter@gmail.com) Paraboli

Mostly Old News

Unconditional Stability of Backward-Time Central-Space [IMPLICIT] 2 of 2

Peter Blomgren, blomgren.peter@gmail.com

Parabolic PDEs

- (26/34)

The Crank-Nicolson scheme applied to $u_t = bu_{xx} + f$ is given by

$$\frac{v_m^{n+1} - v_m^n}{k} = \frac{b}{2} \left[\frac{v_{m+1}^{n+1} - 2v_m^{n+1} + v_{m-1}^{n+1}}{h^2} + \frac{v_{m+1}^n - 2v_m^n + v_{m-1}^n}{h^2} \right] + \frac{1}{2} \left[f_m^{n+1} + f_m^n \right]$$

The corresponding amplification factor is

$$g(heta) = rac{1-2b\mu\sin^2\left(rac{ heta}{2}
ight)}{1+2b\mu\sin^2\left(rac{ heta}{2}
ight)}.$$

The Crank-Nicolson scheme is implicit, unconditionally stable, and order-(2,2) accurate; unlike its hyperbolic version, it is not conservative. When μ is constant it is dissipative of order 2.

Peter Blomgren, (blomgren.peter@gmail.com) Parabolic PDEs

SAN DIEGO STATI

Mostly Old News

Unconditional Stability of Crank-Nicolson

Peter Blomgren, (blomgren.peter@gmail.com)

Parabolic PDEs

— (28/34)

Mostly Old News

The Leapfrog Scheme

The leapfrog scheme applied to $u_t = bu_{xx} + f$ is given by

$$\frac{v_m^{n+1} - v_m^{n-1}}{2k} = b \, \frac{v_{m+1}^n - 2v_m^n + v_{m-1}^n}{h^2} + f_m^n.$$

The corresponding amplification polynomial is

$$g(\theta)^2 + 8g(\theta)b\mu\sin^2\left(\frac{\theta}{2}\right) - 1,$$

with roots

[UNSTABLE]

$$g_{\pm}(heta) = \pm \sqrt{1 + \left(4b\mu\sin^2\left(rac{ heta}{2}
ight)
ight)^2} - 4b\mu\sin^2\left(rac{ heta}{2}
ight).$$

We see that $|g_{-}(\theta)| > 1$, for most values of θ , hence the leapfrog scheme is **unconditionally unstable**.

- (29/34)

Peter Blomgren, (blomgren.peter@gmail.com)

[UNSTABLE] The Leapfrog Scheme

2 of 2

SAN DIEGO STATE UNIVERSITY

Peter Blomgren, (blomgren.peter@gmail.com)

Parabolic PDEs

— (30/34)

Unconditional Stability of The Du Fort-Frankel Scheme [EXPLICIT] 1 of 3

The Du Fort-Frankel scheme is essentially the "fixed" leapfrog scheme [It uses a time-based "averaging fix" (in the spatial derivative) similar to the spatial average (in the time derivative) used in the hyperbolic setting $FTCS \rightsquigarrow LAX-FRIEDRICHS$]

$$\frac{v_m^{n+1}-v_m^{n-1}}{2k}=b\,\frac{v_{m+1}^n-(\mathbf{v_m^{n+1}}+\mathbf{v_m^{n-1}})+v_{m-1}^n}{h^2}+f_m^n.$$

The corresponding amplification polynomial is

$$[1+2b\mu]g(\theta)^2-[4b\mu\cos(\theta)]g(\theta)-[1-2b\mu],$$

with roots

$$g_{\pm}(heta) = rac{2b\mu\cos(heta)\pm\sqrt{1-4b^2\mu^2\sin^2{(heta)}}}{1+2b\mu}$$

Peter Blomgren, (blomgren.peter@gmail.com)

Mostly Old News

Unconditional Stability of The Du Fort-Frankel Scheme [EXPLICIT] 2 of 3

When $1 - 4b^2 \mu^2 \sin^2(\theta) \ge 0$, we get

$$|g_{\pm}(heta)| \leq rac{2b\mu|\cos(heta)| + \sqrt{1 - 4b^2\mu^2\sin^2{(heta)}}}{1 + 2b\mu} \leq rac{2b\mu + 1}{1 + 2b\mu} = 1$$

and when $1-4b^2\mu^2\sin^2\left(\theta\right)<$ 0, we get

$$|g_{\pm}(\theta)|^2 \leq \frac{(2b\mu\cos(\theta))^2 + 4b^2\mu^2\sin^2(\theta) - 1}{(1 + 2b\mu)^2} = \frac{4b^2\mu^2 - 1}{4b^2\mu^2 + 4b\mu + 1} < 1$$

Thus, this explicit scheme is **unconditionally stable**. The one caveat is that it is only consistent if k/h tends to zero as h and k go to zero.

The caveat is a generic property for finite difference schemes applied to parabolic problems, as expressed in the theorem on the following slide.

- (32/34)

Peter Blomgren, (blomgren.peter@gmail.com) Parabolic PDEs

Mostly Old News

Unconditional Stability of The Du Fort-Frankel Scheme

[EXPLICIT] 3 of 3

Peter Blomgren, (blomgren.peter@gmail.com)

Parabolic PDEs

— (33/34)

Convergence of Explicit Schemes

Theorem (Convergence of Explicit Schemes) An explicit, consistent scheme for the parabolic system

$$\mathbf{\bar{u}}_t = B\mathbf{\bar{u}}_{xx} + A\mathbf{\bar{u}}_x + C\mathbf{\bar{u}} + F(t,x)$$

is convergent only if k/h tends to zero as k and h tend to zero.

Recall (for hyperbolic problems):

Theorem

There are no explicit, unconditionally stable, consistent finite difference schemes for hyperbolic systems of partial differential equations.

