

Êı

SAN DIEGO STA UNIVERSITY

— (3/39)

A quick introduction to parabolic PDEs: Our model equation is the one-dimensional heat equation.

Exact solutions to the 1D heat equation in infinite space, using the Fourier transform.

The solution corresponds to a damping of the high-frequency content of the initial condition. \Rightarrow the parabolic solution operator is **dissipative**.

For t > 0, the solution of the heat equation is infinitely differentiable.

Since parabolic PDEs do not have any characteristics, we need boundary conditions at **every** boundary. Typically we specify u(fixed temperature, "Dirichlet"), the [normal] derivative u_x (temperature flux, "Neumann"), or a mixture thereof. **Numerical Schemes** for $u_t = bu_{xx} + f$:

Forward-Time Central-Space

$$\frac{v_m^{n+1} - v_m^n}{k} = b \frac{v_{m+1}^n - 2v_m^n + v_{m-1}^n}{h^2} + f_m^n$$

Explicit; stable when $b\mu \leq \frac{1}{2}$, where $\mu = \frac{k}{h^2}$; order-(1,2); dissipative of order 2.

Backward-Time Central-Space

$$\frac{v_m^{n+1} - v_m^n}{k} = b \frac{v_{m+1}^{n+1} - 2v_m^{n+1} + v_{m-1}^{n+1}}{h^2} + f_m^{n+1}$$

Implicit; unconditionally stable; order-(1,2); dissipative of order 2.

	Schomos: Crank Nicolson, Du Fort Frankol	
Recap	Schemes: Forward/Backward-Time Central S	pace
	Parabolic PDEs	

Last Time

Crank-Nicolson

$$\frac{\mathbf{v}_m^{n+1} - \mathbf{v}_m^n}{k} = \frac{b}{2} \left[\frac{\mathbf{v}_{m+1}^{n+1} - 2\mathbf{v}_m^{n+1} + \mathbf{v}_{m-1}^{n+1}}{h^2} + \frac{\mathbf{v}_{m+1}^n - 2\mathbf{v}_m^n + \mathbf{v}_{m-1}^n}{h^2} \right] + \frac{1}{2} \left[f_m^{n+1} + f_m^n \right]$$

Implicit; unconditionally stable; order-(2,2); dissipative of order 2, when μ is constant.

Du-Fort Frankel ("fixed leapfrog")

$$\frac{v_m^{n+1} - v_m^{n-1}}{2k} = b \frac{v_{m+1}^n - (v_m^{n+1} + v_m^{n-1}) + v_{m-1}^n}{h^2} + f_m^n$$

Explicit; unconditionally stable; order-(2,2); dissipative of order 2, when μ is constant. It is only consistent if k/h tends to zero as h and k go to zero.

Stability

One-step Schemes

Ê SAN DIEGO STAT

— (5/39)

2 of 2

Êı

SAN DIEGO STAT

— (7/39)

3 of 3

Stability: Lower Order Terms Dissipation and Smoothness Boundary Conditions

Peter Blomgren, (blomgren.peter@gmail.com)

Lower Order Terms and Stability

The problem is that the contribution to the amplification factor from the first derivative is sometimes (often?) $\mathcal{O}\left(\sqrt{k}\right)$ which is greater than $\mathcal{O}(k)$ as $k \searrow 0$.

For instance, the forward-time central-space scheme applied to $u_t = bu_{xx} - \mathbf{au_x} + \mathbf{cu}$ gives the amplification factor

$$g=1-4b\mu\sin^2\left(rac{ heta}{2}
ight)-{f ia}\lambda\sin(heta)+{f ck}$$

The term **ck** does not affect stability, but the term containing $\lambda = \sqrt{\mathbf{k}\mu}$ cannot be dropped when μ is fixed. In this particular case, we get

$$|g|^2 = \left(1 - 4b\mu\sin^2\left(\frac{\theta}{2}\right)\right)^2 + \mathbf{a}^2\mathbf{k}\mu\sin^2(\theta)$$

and since the first derivative term gives an $\mathcal{O}(k)$ contribution to $|g|^2$, it does not affect stability. (Strikwerda, p.149) This is also true for the backward-time central-space, and Crank-Nicolson schemes.

Lower Order Terms and Stability

For **hyperbolic** equations we have the following result:

Theorem (Stability of One-Step Schemes) A consistent one-step scheme for the equation

$$u_t + au_x + bu = 0$$

is stable if and only if it is stable for this equation when $\mathbf{b} = \mathbf{0}$. Moreover, when $k = \lambda h$, and λ is a constant, the stability condition on $g(h\xi, k, h)$ is

 $|g(\theta, 0, 0)| < 1.$

Similar results do not always apply directly to parabolic

— (6/39)

Peter Blomgren, blomgren.peter@gmail.com
Stability

Stability: Lower Order Terms Dissipation and Smoothness Boundary Conditions

Dissipation and Smoothness

The fact that a dissipative one-step scheme for a parabolic equation generates a numerical solution with increased smoothness as $t \nearrow$ (provided that μ is constant) is a key result, so lets show that it is indeed true...

Crank-Nicolson

We start with the following theorem

Theorem

equations.

A one-step scheme, consistent with

 $u_t = bu_{xx},$

that is dissipative of order 2 with μ constant satisfies

$$\|\mathbf{v}^{n+1}\|_2^2 + ck\sum_{\nu=1}^n \|\delta_+\mathbf{v}^{\nu}\|_2^2 \le \|\mathbf{v}^0\|_2^2$$

for all initial data v^0 and $n \ge 0$.

Peter Blomgren, blomgren.peter@gmail.com
Stability

— (8/39)

Êı

Stability: Lower Order Terms Dissipation and Smoothness Boundary Conditions	Crank-Nicolson		Stability: Lower Order Terms Dissipation and Smoothness Boundary Conditions	Crank-Nicolson	
Dissipation and Smoothness		Proof 1 of 2	Dissipation and Smoothness		Proof 2 of 2
Proof: Let c_0 be such that $ g(\theta) ^2 \le 1 - c_0$. Then by $\widehat{v}^{\nu+1}(\xi) =$ we have $ \widehat{v}^{\nu+1}(\xi) ^2 = g(\theta) ^2 \widehat{v}^{\nu}(\xi) ^2 \le$ equivalently: $ \widehat{v}^{\nu+1}(\xi) ^2 - \widehat{v}^{\nu}(\xi) ^2 + c_0$ By summing this inequality for $\nu = 0, \dots, n$ $ \widehat{v}^{n+1}(\xi) ^2 + \frac{c_0k}{n} \sum_{i=1}^n \left \frac{1}{h}\right ^2$	$\begin{split} & \left \hat{v}^{\nu}(\xi) \right ^{2} - c_{0} \sin^{2}\left(\frac{\theta}{2}\right) (\text{dissipative scheme of} \\ & g(\theta) \hat{v}^{\nu}(\xi), \\ & \left \hat{v}^{\nu}(\xi) \right ^{2} - c_{0} \sin^{2}\left(\frac{\theta}{2}\right) \hat{v}^{\nu}(\xi) ^{2}; \\ & c_{0} \sin^{2}\left(\frac{\theta}{2}\right) \hat{v}^{\nu}(\xi) ^{2} \leq 0. \\ & \text{n, we get (using } \mu = kh^{-2}) \\ & \left n\left(\frac{\theta}{2}\right) \hat{v}^{\nu}(\xi) \right ^{2} \leq \hat{v}^{0}(\xi) ^{2}. \end{split}$	f order 2).	We get $ \widehat{v}^{n+1}(\xi) ^2 + ck \sum_{\nu=0}^n \mathcal{F} $ Integration over ξ using Parseval's relation gives $ v^{n+1} _2^2 + ck \sum_{\nu=0}^n \mathcal{F} $	$\begin{split} \widehat{v}(\delta_{+}\widehat{v}^{\nu})(\xi) ^{2} &\leq \widehat{v}^{0}(\xi) ^{2}.\\ \hline \vdots & \widehat{\circ}(\xi) ^{2} \rightarrow \ \widehat{\circ}\\ \vdots & \ \widehat{\circ}\ ^{2} \rightarrow \ \widehat{\circ} \\ \widehat{\circ}\ \delta_{+}v^{\nu}\ _{2}^{2} &\leq \ v^{0}\ _{2}^{2} \end{split}$	² 2
Next we use $\left \frac{2\sin\left(\frac{\theta}{2}\right)}{h}\widehat{v}^{\nu}\right = \left \frac{e^{i\theta}}{h}\right ^{2}$ Peter Blomgren, (blomgren.peter@gmail.com)	$\left rac{1}{2} \widehat{v}^ u ight = \left \mathcal{F}(\delta_+ v^ u)(\xi) ight .$ Stability	SAN DIIGO STATE DIVERSITY — (9/39)	which is the inequality in the theorem $\mathcal{F}(\cdot)$, denotes the Fourier transformer Blomgren, (blomgren.peter@gmail.com)	orem. ansform. Stability	<u>ын салаган</u> - (10/39)
Stability: Lower Order Terms Dissipation and Smoothness Boundary Conditions	Crank-Nicolson		Stability: Lower Order Terms Dissipation and Smoothness Boundary Conditions	Crank-Nicolson	
Dissipation and Smoothness		1 of 2	Dissipation and Smoothness		2 of 2
We can use the theorem to show	that colutions become st	noothor			

SAN DIEGO STAT UNIVERSITY

— (11/39)

We can use the theorem to show that solutions become smoother with time \Leftrightarrow norms of the high-order differences (approximating high-order derivatives) tend to zero at a faster rate than the norm of u.

Since $|g(\theta)| \leq 1$, we have $||v^{\nu+1}||_2 \leq ||v^{\nu}||_2$. We note that $\delta_+ v$ (being a finite difference) is also a solution to the scheme, therefore we have $||\delta_+ v^{\nu+1}||_2 \leq ||\delta_+ v^{\nu}||_2$. That is, both the solution and its differences decrease in norm as time increases.

We apply the theorem, and get

 $\|v^{n+1}\|_2^2 + ct\|\delta_+v^n\|_2^2 \le \|v^0\|_2^2$

which shows for nk = t > 0 that $\|\delta_+ v^n\|_2$ is bounded, and we must have

$$\|\delta_+ \mathbf{v}^n\|_2^2 \leq \frac{C}{t} \|\mathbf{v}^0\|_2^2 \searrow 0$$

The argument can be applied recursively; since $\delta_+ v^n$ satisfies the

integer r that $\delta_{+}^{r} v^{n}$ is also bounded. Thus the solution of the

It can be shown that if $v_m^n \to u(t_n, x_m)$ with order of accuracy p,

These results hold if and only if the scheme is dissipative.

difference scheme becomes smoother as t increases.

then $\delta^r_+ v^n_m \to \delta^r_+ u(t_n, x_m)$ with order of accuracy p.

difference equations, we find that for nk = t > 0, and any positive

Dissipation and Smoothness **Boundary Conditions**

Example: Crank-Nicolson

$$dx = 1/20$$
, $dt = 1/20$, $\mu = 20$

Figure: The Crank-Nicolson scheme applied to the initial condition in panel #1, with zero-flux boundary conditions. We know that Crank-Nicolson is non-dissipative if λ remains constant (see next slide).

Dissipation and Smoothness Boundary Conditions

 $dx = 1/40, dt = 1/80, \mu = 20$

Stability: Lower Order Terms Dissipation and Smoothness Boundary Conditions

 $dx = 1/40, dt = 1/40, \mu = 40$

Example: Crank-Nicolson

Figure: The Crank-Nicolson scheme: here we have cut both h and k in half compared with the previous slide. On the next slide we show the result of keeping $\mu = k/h^2$ constant, in which case the scheme is dissipative.

Example: Crank-Nicolson

Crank-Nicolson

 $dx = 1/80, dt = 1/80, \mu = 80$

Figure: Surprisingly(?), refinining in x brings back the over-shoot artefacts.

Dissipation and Smoothness

Boundary Conditions

Crank-Nicolson

Ê

SAN DIEGO STAT

- (19/39)

Since parabolic problems require boundary conditions at every boundary, there is less need for "purely" numerical boundary conditions, compared with hyperbolic problems.

We briefly discuss implementation of the **physical boundary conditions**: — Implementing the Dirichlet (specified values at the boundary points) boundary conditions is straight-forward.

The Neumann (specified flux/derivative) is more of a problem; for instance, one-sided differences

$$\frac{\partial u(t_n, x_0)}{\partial x} \approx \frac{v_1^n - v_0^n}{h}, \quad \frac{\partial u(t_n, x_M)}{\partial x} \approx \frac{v_M^n - v_{M-1}^n}{h}$$

can be used, but these are however only first-order accurate and will degrade the accuracy of higher-order schemes.

How is this useful? — Consider a given flux condition $u_x(t_n, x_0) = \varphi(t_n)$, then

$$\frac{\mathbf{v}_1^n - \mathbf{v}_{-1}^n}{2h} = \varphi_n \quad \Leftrightarrow \quad \mathbf{v}_{-1}^n = \mathbf{v}_1^n - 2h\varphi_n$$

 $\frac{\partial u(t_n, x_0)}{\partial x} \approx \frac{-v_2^n + 4v_1^n - 3v_0^n}{2h}, \quad \frac{\partial u(t_n, x_M)}{\partial x} \approx \frac{v_{M-2}^n - 4v_{M-1}^n + 3v_M^n}{2h}$

It is sometimes useful to use second-order central differences and

SAN DIEGO S

— (20/39)

 $\frac{\partial u(t_n, x_0)}{\partial x} \approx \frac{v_1^n - \mathbf{v_{-1}^n}}{2h}.$

introduce "ghost-points" for the boundary conditions, e.g.

Stability: Lower Other Terms Boundary Condition Data Driver One-Stated: Great Points Connection-Diffusion Equation Duration More Accurate Boundary Conditions 2 of 2 The Convection-Diffusion Equation The Convection-Diffusion Equation Now, if we are "leap-frogging" (Du-Fort Frankel style) the scheme can be applied at the boundary $(m = 0)$ Many physical processes are not described by convection (transport, e.g. the one-way wave-equation) or diffusion (e.g. the heat equation) alone. $u_0^{n+1} - u_0^{n-1} = b \frac{v_1^n - (v_0^{n+1} + v_0^{n-1}) + v_1^n - 2h\varphi_n}{h^2} + f_m^n$. An oil-spill in the ocean or a river is spreading by diffusion, while being transported by currents; the same goes for your daily multi-vitamin traveling through your bowels and diffusing into your bloodstream. $u_0^{n+1} - u_0^{n-1} = b \frac{v_1^n - (v_0^{n+1} + v_0^{n-1}) + v_1^n - 2h\varphi_n}{h^2} + f_m^n$. Ideas like these are commonly used. Mere a is the convection speed, and b is the diffusion coefficient. Iter a is the convection speed, and b is the diffusion coefficient. Peter Biomgren, (blogren, peter#geal1.cov) Bounder Conditions Convection-Diffusion Equation The Convection-Diffusion Equation Numerics The Convection-Diffusion Equation Many physical processes are not described by the convection diffusion (e.g. the heat equation) alone. An oil-spill Ideas like these are commonly used. Iter a is the convection speed, and b is the diffusion coefficient.						
More Accurate Boundary Conditions2 of 2Now, if we are "leap-frogging" (Du-Fort Frankel style) the scheme can be applied at the boundary $(m = 0)$ Many physical processes are not described by convection (transport, e.g. the one-way wave-equation) or diffusion $(e.g. the heat equation)$ alone. $\frac{v_0^{n+1} - v_0^{n-1}}{2k} = b \frac{v_1^n - (v_0^{n+1} + v_0^{n-1}) + v_{-1}^n}{h^2} + f_m^n$ Ideas like these are commonly used.Many physical processes are not described by convection (transport, e.g. the one-way wave-equation) or diffusion $(e.g. the heat equation)$ alone. $\frac{v_0^{n+1} - v_0^{n-1}}{2k} = b \frac{v_1^n - (v_0^{n+1} + v_0^{n-1}) + v_{-1}^n - 2h\varphi_n}{h^2} + f_m^n$ These physical processes are better described by the convection-diffusion equation $\frac{v_0^{n+1} - v_0^{n-1}}{2k} = b \frac{v_1^n - (v_0^{n+1} + v_0^{n-1}) + v_1^n - 2h\varphi_n}{h^2} + f_m^n$ Here a is the convection speed, and b is the diffusion coefficient. $\frac{v_0^{n+1} - v_0^{n-1}}{2k} = b \frac{v_1^n - (v_0^{n+1} + v_0^{n-1}) + v_1^n - 2h\varphi_n}{h^2} + f_m^n$ Ideas like these are commonly used.Peter Blomgren, (blongren.pater#gnal.com)Boundary Conditions-(21/39)Peter Blomgren, (blongren.pater#gnal.com)Convection-Diffusion EquationNumericsThe Convection-Diffusion EquationNumerics, 1 of 3The Convection-Diffusion EquationNumerics, 2 of	Stability: Lower Order Terms Dissipation and Smoothness Boundary Conditions	2nd Order One-Sided; Ghost Point	ts	Convection-Diffusion Variable Coefficients	Numerics Upwind Differences	
Now, if we are "leap-frogging" (Du-Fort Frankel style) the scheme can be applied at the boundary $(m = 0)$ $\frac{v_0^{n+1} - v_0^{n-1}}{2k} = b \frac{v_1^n - (v_0^{n+1} + v_0^{n-1}) + \mathbf{v}_{-1}^n}{h^2} + f_m^n,$ $\frac{v_0^{n+1} - v_0^{n-1}}{2k} = b \frac{v_1^n - (v_0^{n+1} + v_0^{n-1}) + \mathbf{v}_{-1}^n}{h^2} + f_m^n,$ Ideas like these are commonly used. $\frac{v_0^{n+1} - v_0^{n-1}}{2k} = b \frac{v_1^n - (v_0^{n+1} + v_0^{n-1}) + \mathbf{v}_{-1}^n - 2\mathbf{h}\varphi_n}{h^2} + f_m^n,$ Ideas like these are commonly used. $\frac{v_0^{n+1} - v_0^{n-1}}{2k} = b \frac{v_1^n - (v_0^{n+1} + v_0^{n-1}) + \mathbf{v}_{-1}^n - 2\mathbf{h}\varphi_n}{h^2} + f_m^n,$ Ideas like these are commonly used. $\frac{v_0^{n+1} - v_0^{n-1}}{2k} = b \frac{v_1^n - (v_0^{n+1} + v_0^{n-1}) + \mathbf{v}_{-1}^n - 2\mathbf{h}\varphi_n}{h^2} + f_m^n,$ Ideas like these are commonly used. $\frac{v_0^{n+1} - v_0^{n-1}}{2k} = b \frac{v_1^n - (v_0^{n+1} + v_0^{n-1}) + \mathbf{v}_{-1}^n - 2\mathbf{h}\varphi_n}{h^2} + f_m^n,$ Ideas like these are commonly used. $\frac{v_0^{n+1} - v_0^{n-1}}{2k} = b \frac{v_1^n - (v_0^{n+1} + v_0^{n-1}) + \mathbf{v}_{-1}^n - 2\mathbf{h}\varphi_n}{h^2} + f_m^n,$ Ideas like these are commonly used. $\frac{v_0^{n+1} - v_0^{n-1}}{2k} = b \frac{v_1^n - (v_0^{n+1} + v_0^{n-1}) + \mathbf{v}_{-1}^n - 2\mathbf{h}\varphi_n}{h^2} + f_m^n,$ Ideas like these are commonly used. $\frac{v_0^{n+1} - v_0^{n-1}}{2k} = b \frac{v_1^n - (v_0^{n+1} + v_0^{n-1}) + \mathbf{v}_{-1}^n - 2\mathbf{h}\varphi_n}{h^2} + f_m^n,$ Ideas like these are commonly used. $\frac{v_0^{n+1} - v_0^{n-1}}{2k} = b \frac{v_1^n - (v_0^{n+1} + v_0^{n-1}) + \mathbf{v}_{-1}^n - 2\mathbf{h}\varphi_n}{h^2} + f_m^n,$ Ideas like these are commonly used. $\frac{v_0^{n+1} - v_0^{n-1}}{2k} = b \frac{v_1^n - (v_0^{n+1} + v_0^{n-1}) + \mathbf{v}_{-1}^n - 2\mathbf{h}\varphi_n}{h^n} + f_m^n,$ Ideas like these are commonly used. $\frac{v_0^{n+1} - v_0^{n-1} - (v_0^{n+1} + v_0^{n-1}) + v_0^n - 2\mathbf{h}\varphi_n}{V_0^{n+1} - v_0^{n-1} + v_0^{n-1}} + \frac{v_0^{n-1} - 2\mathbf{h}\varphi_n}{V_0^{n+1} - 2\mathbf{h}\varphi_n} + \frac{v_0^{n-1} - (v_0^{n+1} + v_0^{n-1}) + v_0^{n-1} - 2\mathbf{h}\varphi_n}{V_0^{n+1} - 2\mathbf{h}\varphi_n} + \frac{v_0^{n-1} - 2\mathbf{h}\varphi_n}{V_$	More Accurate Boundary Conditions		2 of 2	The Convection-Diffusion Equation		
Peter Blomgren, (blomgren.peter@gmail.com) Boundary Conditions - (21/39) Peter Blomgren, (blomgren.peter@gmail.com) Convection-Diffusion Convection-Diffusion Convection-Diffusion Numerics The Convection-Diffusion Equation Numerics, 1 of 3 The Convection-Diffusion Equation Numerics, 2 of	Now, if we are "leap-frogging" (Du-Fort Frankel style) the scheme can be applied at the boundary $(m = 0)$ $\frac{v_0^{n+1} - v_0^{n-1}}{2k} = b \frac{v_1^n - (v_0^{n+1} + v_0^{n-1}) + \mathbf{v_{-1}^n}}{h^2} + f_m^n,$ $\frac{v_0^{n+1} - v_0^{n-1}}{2k} = b \frac{v_1^n - (v_0^{n+1} + v_0^{n-1}) + \mathbf{v_1^n} - 2\mathbf{h}\varphi_n}{h^2} + f_m^n.$ Ideas like these are commonly used.			Many physical processes are not desc the one-way wave-equation) or diffus An oil-spill in the ocean or a river is transported by currents; the same go traveling through your bowels and di These physical processes are better of convection-diffusion equation $u_t + au_x$ Here <i>a</i> is the convection speed , and	cribed by convection sion (<i>e.g.</i> the heat en- spreading by diffusion bes for your daily mu ffusing into your blo described by the $= bu_{xx},$ d <i>b</i> is the diffusion	(transport, <i>e.g.</i> quation) alone. on, while being lti-vitamin odstream.
Peter Blomgren, (blomgren.peter@gmail.com) Boundary Conditions - (21/39) Peter Blomgren, (blomgren.peter@gmail.com) Convection-Diffusion - (22/39) Convection-Diffusion Variable Coefficients Numerics Upwind Differences Numerics, 1 of 3 Convection-Diffusion Equation Numerics, 1 of 3 The Convection-Diffusion Equation Numerics, 2 of			SAN DIIGO STATE UNIVERSITY			SAN DIGO STA UNIVERSITY
Convection-Diffusion Variable CoefficientsNumerics Upwind DifferencesNumerics Upwind DifferencesNumerics Upwind DifferencesNumerics Upwind DifferencesThe Convection-Diffusion EquationNumerics, 1 of 3The Convection-Diffusion EquationNumerics, 2 of	Peter Blomgren, $\langle \texttt{blomgren.peter@gmail.com} \rangle$	Boundary Conditions	— (21/39)	Peter Blomgren, {blomgren.peter@gmail.com}	Convection-Diffusion	— (22/39)
The Convection-Diffusion EquationNumerics, 1 of 3The Convection-Diffusion EquationNumerics, 2 of	Convection-Diffusion Variable Coefficients	Numerics Upwind Differences		Convection-Diffusion Variable Coefficients	Numerics Upwind Differences	
	The Convection-Diffusion Equation		Numerics, 1 of 3	The Convection-Diffusion Equation		Numerics, 2 of 3

Êı

SAN DIEGO STAT

— (23/39)

First, we consider the forward-time central-space scheme

 $\frac{v_m^{n+1}-v_m^n}{k}+a\frac{v_{m+1}^n-v_{m-1}^n}{2h}=b\frac{v_{m+1}^n-2v_m^n+v_{m-1}^n}{h^2},$

which is first order in time, and second order in space. Since stability requires $b\mu \leq 1/2$, we must have $k \sim h^2$, so the scheme is second-order overall.

For convenience, lets assume a > 0, define $\mu = \frac{k}{h^2}$ and $\alpha = \frac{ha}{2b} = \frac{a\lambda}{2b\mu}$, we can write the scheme as

 $v_m^{n+1} = (1-2b\mu)v_m^n + b\mu(1-\alpha)v_{m+1}^n + b\mu(1+\alpha)v_{m-1}^n.$

Based on previous discussion of parabolic PDEs, we know that $||u(t, \cdot)||_{\infty} \leq ||u(t', \cdot)||_{\infty}$ if t > t' (the peak-value is non-increasing).

In order to guarantee that the numerical solution of the difference scheme

$$v_m^{n+1} = (1-2b\mu)v_m^n + b\mu(1-\alpha)v_{m+1}^n + b\mu(1+\alpha)v_{m-1}^n,$$

also is non-increasing, we must have $\alpha \leq 1$ (and $b\mu \leq 1/2$), when these two conditions are satisfied, we have (let $v_*^n = \max_m |v_m^n|$)

$$\begin{aligned} |v_m^{n+1}| &\leq (1-2b\mu)|v_m^n| + b\mu(1-\alpha)|v_{m+1}^n| + b\mu(1+\alpha)|v_{m-1}^n| \\ &\leq v_*^n \left[(1-2b\mu) + b\mu(1-\alpha) + b\mu(1+\alpha) \right] = v_*^n. \end{aligned}$$

So that $|v_{*'}^{n+1}| \le |v_{*}^{n}|$, *i.e.* the peak-value of the numerical solution is non-increasing.

Convection-Diffusion

Êı

SAN DIEGO STA

— (24/39)

— (28/39)

Convection-Diffusion Variable Coefficients	Convection-Diffusion Variable Coefficients
Variable Coefficients	Looking Ahead
When the diffusivity <i>b</i> is a function of time and space, <i>e.g.</i> of the common form $u_t = [b(t, x)u_x]_x,$ the difference schemes must be chosen to maintain consistency. For example, the forward-time central-space scheme for this problem is given by $\frac{v_m^{n+1} - v_m^n}{k} = \frac{b(t_n, x_{m+1/2})(v_{m+1}^n - v_m^n) - b(t_n, x_{m-1/2})(v_m^n - v_{m-1}^n)}{h^2}.$ This scheme is consistent if $b(t, x)\mu \leq \frac{1}{2},$	 Systems of PDEs in Higher Dimensions. Second-Order Equations. Analysis of Well-Posed and Stable Problem. Convergence Estimates for IVPs. Well-Posed and Stable IBVPs. Elliptical PDEs and Difference Schemes. Linear Iterative Methods. The Method of Steepest Descent and the Conjugate Gradient Method.
for all values of (t, x) in the domain of computation	San Dirgo State University
Peter Blomgren, (blomgren.peter@gmail.com) Variable Coefficients - (33/39)	Peter Blomgren, (blomgren.peter@gmail.com) Variable Coefficients - (34/39)
Supplemental Material Reference Material	Supplemental Material Reference Material
The Reynolds Number	The Péclet Number
Definition (Re _L , The Reynolds Number) $Re_{L} = \frac{\rho u L}{\mu} = \frac{u L}{\nu},$ $\boxed{\begin{array}{c c} Symbol & Description & Units \\ \hline \rho & density of the fluid & kg/m^{3} \\ u & fluid velocity wrt. object & m/s \\ L & characteristic length & m \\ \mu & fluid dynamic viscosity & Pa \cdot s, or Ns/m^{2}, or kg/(m \cdot s) \\ \nu & fluid kinematic viscosity & m^{2}/s \\ \hline \end{array}}$	$\begin{aligned} \text{Definition (Pe}_{L}, \text{ The Péclet Number}) \\ \text{Pe}_{L} &= \frac{\text{advective transport rate}}{\text{diffusive transport rate}} = \underbrace{\frac{Lu}{D} = \text{Re}_{L} \text{Sc}}_{\text{mass transfer}} = \underbrace{\frac{Lu}{\alpha} = \text{Re}_{L} \text{Pr}}_{\text{heat transfer}} \\ \hline \frac{\text{Symbol Description Units}}{\text{Re Reynolds number}} \\ \text{Sc Schmidt number} \\ \text{Pr Prandtl number} \\ \text{Pr Prandtl number} \\ L \text{ characteristic length } m \\ u \text{ fluid velocity wrt. object } m/s \\ D \text{ mass diffusion coefficent } m^2/s \\ \alpha \text{ thermal diffusivity } k/(\rho \cdot c_{\rho}) \\ k \text{ thermal conductivity } W/(m \cdot K) \\ \rho \text{ density } kg/m^3 \\ c_{\rho} \text{ heat capacity } (\text{kg} \cdot m^2)/(K \cdot s^2) \end{aligned}$
Peter Blomgren, (blomgren.peter@gmail.com) Variable Coefficients - (35/39)	Peter Blomgren, (blomgren.peter@gmail.com) Variable Coefficients - (36/39)

