Numerical Solutions to PDEs
 Lecture Notes \＃11－Parabolic PDEs Stability，Boundary Conditions；
 Convection－Diffusion；Variable Coefficients

Peter Blomgren，〈blomgren．peter＠gmail．com〉
Department of Mathematics and Statistics Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego，CA 92182－7720
http：／／terminus．sdsu．edu／

Spring 2018	
Peter Blomgren，〈blomgren．peter＠gmail．com〉	Stability
Recap	Parabolic PDEs Schemes：Forward／Backward－Time Central Space Schemes：Crank－Nicolson，Du－Fort Frankel

Parabolic PDEs Schemes：Forward／Backward－Time Central

A quick introduction to parabolic PDEs：Our model equation is the one－dimensional heat equation．
Exact solutions to the 1D heat equation in infinite space，using the Fourier transform．
The solution corresponds to a damping of the high－frequency content of the initial condition．\Rightarrow the parabolic solution operator is dissipative．
For $t>0$ ，the solution of the heat equation is infinitely differentiable．
Since parabolic PDEs do not have any characteristics，we need boundary conditions at every boundary．Typically we specify u （fixed temperature，＂Dirichlet＂），the［normal］derivative u_{x} （temperature flux，＂Neumann＂），or a mixture thereof．
（1）
Recap
－Parabolic PDEs
－Schemes：Forward／Backward－Time Central Space
－Schemes：Crank－Nicolson，Du－Fort Frankel
Stability：Lower Order Terms
－One－step SchemesDissipation and Smoothness
－Crank－NicolsonBoundary Conditions
－2nd Order One－Sided；Ghost Points
（5）
Convection－Diffusion
－Numerics
－Upwind Differences
Variable Coefficients

Peter Blomgren，〈blomgren．peter＠gmail．com〉 Stability
Parabolic PDEs
Schemes：Forward／Backward－Time Central Space
Schemes：Crank－Nicolson，Du－Fort Frankel
Last Time
2 of 3

Numerical Schemes for $u_{t}=b u_{x x}+f$ ：

Forward－Time Central－Space

$$
\frac{v_{m}^{n+1}-v_{m}^{n}}{k}=b \frac{v_{m+1}^{n}-2 v_{m}^{n}+v_{m-1}^{n}}{h^{2}}+f_{m}^{n}
$$

Explicit；stable when $b \mu \leq \frac{1}{2}$ ，where $\mu=\frac{k}{h^{2}}$ ；order－（1，2）；dissipative of order 2.

Backward－Time Central－Space

$$
\frac{v_{m}^{n+1}-v_{m}^{n}}{k}=b \frac{v_{m+1}^{n+1}-2 v_{m}^{n+1}+v_{m-1}^{n+1}}{h^{2}}+f_{m}^{n+1}
$$

Implicit；unconditionally stable；order－（1，2）；dissipative of order 2 ．

Parabolic PDEs
Schemes: Forward/Backward-Time Central Space Schemes: Crank-Nicolson, Du-Fort Franke

For hyperbolic equations we have the following result:
Theorem (Stability of One-Step Schemes)
A consistent one-step scheme for the equation

$$
u_{t}+a u_{x}+b u=0
$$

is stable if and only if it is stable for this equation when
$\mathbf{b}=\mathbf{0}$. Moreover, when $k=\lambda h$, and λ is a constant, the stability condition on $g(h \xi, k, h)$ is

$$
|g(\theta, 0,0)| \leq 1
$$

Similar results do not always apply directly to parabolic equations.

Stability: Lower Order Terms
 Dissipation and Smoothness

Crank-Nicolson
Boundary Conditions
Dissipation and Smoothness
The fact that a dissipative one-step scheme for a parabolic equation generates a numerical solution with increased smoothness as $t \nearrow$ (provided that μ is constant) is a key result, so lets show that it is indeed true...
We start with the following theorem
Theorem
A one-step scheme, consistent with

$$
u_{t}=b u_{x x},
$$

that is dissipative of order 2 with μ constant satisfies

$$
\left\|v^{n+1}\right\|_{2}^{2}+c k \sum_{\nu=1}^{n}\left\|\delta_{+} v^{\nu}\right\|_{2}^{2} \leq\left\|v^{0}\right\|_{2}^{2}
$$

for all initial data v^{0} and $n \geq 0$.
and since the first derivative term gives an $\mathcal{O}(k)$ contribution to $|g|^{2}$, it does not affect stability. (Strikwerda, p.149) This is also true for the backward-time central-space, and Crank-Nicolson schemes.

We get

$$
\left|\widehat{v}^{n+1}(\xi)\right|^{2}+c k \sum_{\nu=0}^{n}\left|\mathcal{F}\left(\delta_{+} \widehat{v}^{\nu}\right)(\xi)\right|^{2} \leq\left|\widehat{v}^{0}(\xi)\right|^{2}
$$

| Integration over ξ | $:\|\widehat{o}(\xi)\|^{2}$ | \rightarrow | $\\|\widehat{o}\\|^{2}$ | | | |
|---|---|---|---|---|---|---|---|---|
| using Parseval＇s relation | $:$ | $\\|\widehat{o}\\|^{2}$ | \rightarrow | $\\|\circ\\|^{2}$ |

gives．．．

$$
\left\|v^{n+1}\right\|_{2}^{2}+c k \sum_{\nu=0}^{n}\left\|\delta_{+} v^{\nu}\right\|_{2}^{2} \leq\left\|v^{0}\right\|_{2}^{2}
$$

which is the inequality in the theorem．
Here $\mathcal{F}(\cdot)$ ，denotes the Fourier transform．
Peter Blomgren，〈blomgren．peter＠gmail．com〉 Stability

The argument can be applied recursively；since $\delta_{+} v^{n}$ satisfies the difference equations，we find that for $n k=t>0$ ，and any positive integer r that $\delta_{+}^{r} v^{n}$ is also bounded．Thus the solution of the difference scheme becomes smoother as t increases．

It can be shown that if $v_{m}^{n} \rightarrow u\left(t_{n}, x_{m}\right)$ with order of accuracy p ， then $\delta_{+}^{r} v_{m}^{n} \rightarrow \delta_{+}^{r} u\left(t_{n}, x_{m}\right)$ with order of accuracy p ．

These results hold if and only if the scheme is dissipative．

$$
d x=1 / 20, d t=1 / 20, \mu=20
$$

Figure：The Crank－Nicolson scheme applied to the initial condition in panel \＃1，with zero－flux boundary conditions．We know that Crank－Nicolson is non－dissipative if λ remains constant（see next slide）

$\mathrm{T}=0.2000, \mathrm{dx}=1120, \mathrm{dt}=1120$

Peter Blomgren，〈blomgren．peter＠gmail．com〉 Stability

Stability：Lower Order Terms
 issipation and Smoothnes

Crank－Nicolson
Boundary Conditions
$d x=1 / 40, d t=1 / 80, \mu=20$

Example：Crank－Nicolson

Figure：The Crank－Nicolson scheme：here，we finally get some damping in the oscillations of the solution．－Dissipation is a convergence result！

Figure：The Crank－Nicolson scheme：here we have cut both h and k in half compared with the previous slide．On the next slide we show the result of keeping $\mu=k / h^{2}$ constant，in which case the scheme is dissipative．

tabiity：Lower Order Terms
Dissipation and Smoothness
Boundary Conditions
Crank－Nicolson
$d x=1 / 80, d t=1 / 80, \mu=80$

Example：Crank－Nicolson

Figure：Surprisingly（？），refinining in x brings back the over－shoot artefacts

Peter Blomgren，〈blomgren．peter＠gmail．com〉 Stability

$$
d x=1 / 20, d t=1 / 40, \mu=10
$$

Example：Crank－Nicolson

$d x=1 / 20, d t=1 / 80, \mu=5$
Figure：Coarsening in $x(d x=1 / 20$ ，instead of $d x=1 / 40$ lessens the＂carrying capacity＂of high－frequency content of the grid．．

> Stability: Lower Order Terms Dissipation and Smoothness

2nd Order One－Sided；Ghost Points
Boundary Conditions

Since parabolic problems require boundary conditions at every boundary，there is less need for＂purely＂numerical boundary conditions，compared with hyperbolic problems．

We briefly discuss implementation of the physical boundary conditions：－Implementing the Dirichlet（specified values at the boundary points）boundary conditions is straight－forward．

The Neumann（specified flux／derivative）is more of a problem；for instance，one－sided differences

$$
\frac{\partial u\left(t_{n}, x_{0}\right)}{\partial x} \approx \frac{v_{1}^{n}-v_{0}^{n}}{h}, \quad \frac{\partial u\left(t_{n}, x_{M}\right)}{\partial x} \approx \frac{v_{M}^{n}-v_{M-1}^{n}}{h}
$$

can be used，but these are however only first－order accurate and will degrade the accuracy of higher－order schemes．

Figure：Refining in time lowers μ ，which reduces oscillations．

Peter Blomgren，〈blomgren．peter＠gmail．com〉 Stability

tability：Lower Order Terms Dissipation and Smoothness Boundary Conditions

Ond Order One－Sided；Ghost Point

More Accurate Boundary Conditions
Second order one－sided accurate boundary conditions are given by

$$
\frac{\partial u\left(t_{n}, x_{0}\right)}{\partial x} \approx \frac{-v_{2}^{n}+4 v_{1}^{n}-3 v_{0}^{n}}{2 h}, \quad \frac{\partial u\left(t_{n}, x_{M}\right)}{\partial x} \approx \frac{v_{M-2}^{n}-4 v_{M-1}^{n}+3 v_{M}^{n}}{2 h}
$$

It is sometimes useful to use second－order central differences and introduce＂ghost－points＂for the boundary conditions，e．g．

$$
\frac{\partial u\left(t_{n}, x_{0}\right)}{\partial x} \approx \frac{v_{1}^{n}-\mathbf{v}_{-1}^{\mathbf{n}}}{2 h} .
$$

How is this useful？－Consider a given flux condition

$u_{x}\left(t_{n}, x_{0}\right)=\varphi\left(t_{n}\right)$ ，then

$$
\frac{v_{1}^{n}-\mathbf{v}_{-1}^{\mathbf{n}}}{2 h}=\varphi_{n} \quad \Leftrightarrow \quad \mathbf{v}_{-1}^{\mathbf{n}}=v_{1}^{n}-2 h \varphi_{n}
$$

Now，if we are＂leap－frogging＂（Du－Fort Frankel style）the scheme can be applied at the boundary $(m=0)$

$$
\begin{gathered}
\frac{v_{0}^{n+1}-v_{0}^{n-1}}{2 k}=b \frac{v_{1}^{n}-\left(v_{0}^{n+1}+v_{0}^{n-1}\right)+\mathbf{v}_{-1}^{n}}{h^{2}}+f_{m}^{n}, \\
\frac{v_{0}^{n+1}-v_{0}^{n-1}}{2 k}=b \frac{v_{1}^{n}-\left(v_{0}^{n+1}+v_{0}^{n-1}\right)+\mathbf{v}_{1}^{n}-\mathbf{2 h} \varphi_{\mathbf{n}}}{h^{2}}+f_{m}^{n} .
\end{gathered}
$$

Ideas like these are commonly used．

Peter Blomgren，〈blomgren．peter＠gmail．com〉 Boundary Conditions
Pernen
Numerics
Variable Coefficients Upwind Differences
The Convection－Diffusion Equation
Numerics， 1 of 3

First，we consider the forward－time central－space scheme

$$
\frac{v_{m}^{n+1}-v_{m}^{n}}{k}+a \frac{v_{m+1}^{n}-v_{m-1}^{n}}{2 h}=b \frac{v_{m+1}^{n}-2 v_{m}^{n}+v_{m-1}^{n}}{h^{2}}
$$

which is first order in time，and second order in space．Since stability requires $b \mu \leq 1 / 2$ ，we must have $k \sim h^{2}$ ，so the scheme is second－order overall．
For convenience，lets assume $a>0$ ，define $\mu=\frac{k}{h^{2}}$ and $\alpha=\frac{h a}{2 b}=\frac{a \lambda}{2 b \mu}$ ，we can write the scheme as

$$
v_{m}^{n+1}=(1-2 b \mu) v_{m}^{n}+b \mu(1-\alpha) v_{m+1}^{n}+b \mu(1+\alpha) v_{m-1}^{n} .
$$

Based on previous discussion of parabolic PDEs，we know that $\|u(t, \cdot)\|_{\infty} \leq\left\|u\left(t^{\prime}, \cdot\right)\right\|_{\infty}$ if $t>t^{\prime}$（the peak－value is non－increasing）．

Many physical processes are not described by convection（transport，e．g． the one－way wave－equation）or diffusion（e．g．the heat equation）alone．

An oil－spill in the ocean or a river is spreading by diffusion，while being transported by currents；the same goes for your daily multi－vitamin traveling through your bowels and diffusing into your bloodstream．

These physical processes are better described by the
convection－diffusion equation

$$
u_{t}+\left(u_{x}=b u_{x x}\right.
$$

Here a is the convection speed，and b is the diffusion coefficient．

Peter Blomgren，〈blomgren．peter＠gmail．com〉 Convection－Diffusion

Convection－Diffusion

Numerics

Upwind Differences
The Convection－Diffusion Equation
Numerics， 2 of 3

In order to guarantee that the numerical solution of the difference scheme

$$
v_{m}^{n+1}=(1-2 b \mu) v_{m}^{n}+b \mu(1-\alpha) v_{m+1}^{n}+b \mu(1+\alpha) v_{m-1}^{n},
$$

also is non－increasing，we must have $\alpha \leq 1$（and $b \mu \leq 1 / 2$ ），when these two conditions are satisfied，we have（let $v_{*}^{n}=\max _{m}\left|v_{m}^{n}\right|$ ）

$$
\begin{aligned}
\left|v_{m}^{n+1}\right| & \leq(1-2 b \mu)\left|v_{m}^{n}\right|+b \mu(1-\alpha)\left|v_{m+1}^{n}\right|+b \mu(1+\alpha)\left|v_{m-1}^{n}\right| \\
& \leq v_{*}^{n}[(1-2 b \mu)+b \mu(1-\alpha)+b \mu(1+\alpha)]=v_{*}^{n} .
\end{aligned}
$$

So that $\left|v_{*^{\prime}}^{n+1}\right| \leq\left|v_{*}^{n}\right|$ ，i．e．the peak－value of the numerical solution is non－increasing．

The condition $\alpha \leq 1$ ，can be re－written

$$
h \leq \frac{2 b}{a},
$$

which is a restriction on the spatial grid－spacing．
The quantity $\frac{a}{b}$ corresponds to the Reynolds number in fluid flow，or the Peclet number in heat flow．

The quantity $\alpha=\frac{h a}{2 b}$（sometimes 2α ）is often called the cell Reynolds number or the cell Peclet number．

If the grid－spacing h is too large，then the numerical solution cannot resolve the physics and oscillations occur．These oscillations are not due to instability（as long as the stability criterion is satisfied，of course）and do not grow；they are only a result of inadequate resolution．

Peter Blomgren，〈blomgren．peter＠gmail．com〉
Convection－Diffusion
$-(25 / 39)$

```
Variable
Numerics
Upwind Differences
```

The Convection－Diffusion Equation
Example \＃2
Figure：（Forward－Time Central－Space）Convection－diffusion with $a=10, b=0.1, h=0.02 \leq$ $0.02, k=0.0001, \mu=1 / 4<1 / 2$ ．We are stable，and have resolved the physics．

Numerics
Upwind Differences
The Convection－Diffusion Equation
Example \＃1
Figure：（Forward－Time Central－Space）Convection－diffusion with $a=10, b=0.1, h=0.1>$ $0.02, k=0.0025, \mu=1 / 4<1 / 2$ ．We are stable，but have not resolved the physics．

The Convection－Diffusion Equation
Upwind Differences， 1 of 3

In example $\# 2$ we had to push the resolution to $h=0.02$（601 points in $[-1,11])$ and $k=0.0001(10001$ time－steps in $[0,1])$ ，for a grand total of $6,010,601$ space－time grid points．That is a ridiculously high price to pay for such a simple 1D problem！！！
One way to avoid the resolution restriction is to use upwind differencing of the convection term．This corresponds to a switching between backward differencing when $a>0$ ，and forward differencing when $a<0$ ， e．g．only differencing in the direction where the（hyperbolic） characteristics come from：

$$
\frac{v_{m}^{n+1}-v_{m}^{n}}{k}+a^{+}\left[\frac{v_{m}^{n}-v_{m-1}^{n}}{h}\right]+a^{-}\left[\frac{v_{m+1}^{n}-v_{m}^{n}}{h}\right]=b \frac{v_{m+1}^{n}-2 v_{m}^{n}+v_{m-1}^{n}}{h^{2}}
$$

or

$$
v_{m}^{n+1}=[1-2 b \mu(1+\alpha)] v_{m}^{n}+b \mu v_{m+1}^{n}+b \mu(1+2 \alpha) v_{m-1}^{n}
$$

The restriction $h \leq \frac{2 b}{|a|}$ is replaced by

$$
2 b \mu+|a| \lambda \leq 1,
$$

which is much less restrictive when b is small and a large．If we want $\mu=1 / 4$ ，i．e．$k=h^{2} / 4$ ，then we must have $h \leq \frac{4}{a}\left(1-\frac{b}{2}\right)$ which with $a=10$ and $b=0.1$ as in the previous examples is 0.38 － 19 times that of the previous restriction．
We have，however，also sacrificed the spatial second order accuracy，since the first－order upwind difference is first order．

Figure：（Upwinding）Convection－diffusion with $a=10, b=0.1, h=0.40 \geq 0.38, k=0.04$ ， $\mu=1 / 4<1 / 2$ ．We are stable，but have not resolved the physics．

Figure：（Upwinding）Convection－diffusion with $a=10, b=0.1, h=0.35 \leq 0.38, k=0.030625$ ， $\mu=1 / 4<1 / 2$ ．We are stable，and have resolved the physics．

Peter Blomgren，〈blomgren．peter＠gmail．com〉
Convection－Diffusion
－（30／39）
Convection－Diffusion
Numerics
Upwind Differences

The Convection－Diffusion Equation
Upwind Differences， 3 of 3
The upwind scheme

$$
\frac{v_{m}^{n+1}-v_{m}^{n}}{k}+a \frac{v_{m}^{n}-v_{m-1}^{n}}{h}=b \frac{v_{m+1}^{n}-2 v_{m}^{n}+v_{m-1}^{n}}{h^{2}}
$$

can be rewritten in the form

$$
\frac{v_{m}^{n+1}-v_{m}^{n}}{k}+a \frac{v_{m+1}^{n}-v_{m-1}^{n}}{2 h}=\left(b+\frac{a h}{2}\right) \frac{v_{m+1}^{n}-2 v_{m}^{n}+v_{m-1}^{n}}{h^{2}}
$$

We see that upwinding corresponds to changing the diffusion coefficient， or adding artificial viscosity to suppress oscillations．
There has been much debate regarding the value of these artificial－viscosity solutions；clearly they may only give qualitative information about the true solution．
More details on solving the convection－diffusion equation numerically can be found in K．W．Morton，Numerical Solution of Convection－Diffusion Problems，Chapman \＆Hall，London， 1996.

When the diffusivity b is a function of time and space，e．g．of the common form

$$
u_{t}=\left[b(t, x) u_{x}\right]_{x}
$$

the difference schemes must be chosen to maintain consistency．
For example，the forward－time central－space scheme for this problem is given by

$$
\frac{v_{m}^{n+1}-v_{m}^{n}}{k}=\frac{b\left(t_{n}, x_{m+1 / 2}\right)\left(v_{m+1}^{n}-v_{m}^{n}\right)-b\left(t_{n}, x_{m-1 / 2}\right)\left(v_{m}^{n}-v_{m-1}^{n}\right)}{h^{2}}
$$

This scheme is consistent if

$$
b(t, x) \mu \leq \frac{1}{2}
$$

for all values of (t, x) in the domain of computation．．．
Peter Blomgren，〈blomgren．peter＠gmail．com〉
Variable Coefficients
－（33／39）

$$
\text { Supplemental Material } \quad \text { Reference Material }
$$

The Reynolds Number

Definition（ Re_{L} ，The Reynolds Number）

$$
\operatorname{Re}_{L}=\frac{\rho u L}{\mu}=\frac{u L}{\nu}
$$

Symbol	Description	Units
ρ	density of the fluid	$\mathrm{kg} / \mathrm{m}^{3}$
u	fluid velocity wrt．object	m / s
L	characteristic length	m
μ	fluid dynamic viscosity	$\mathrm{Pa} \cdot \mathrm{s}$, or $\mathrm{Ns} / \mathrm{m}^{2}$, or $\mathrm{kg} /(\mathrm{m} \cdot \mathrm{s})$
ν	fluid kinematic viscosity	$\mathrm{m}^{2} / \mathrm{s}$

Looking Ahead．．．
－Systems of PDEs in Higher Dimensions．
－Second－Order Equations．
－Analysis of Well－Posed and Stable Problem．
－Convergence Estimates for IVPs．
－Well－Posed and Stable IBVPs．
－Elliptical PDEs and Difference Schemes．
－Linear Iterative Methods．
－The Method of Steepest Descent and the Conjugate Gradient Method．

Peter Blomgren，〈blomgren．peter＠gmail．com〉 Variable Coefficients

Supplemental Material
 Reference Material

The Péclet Number

Definition（ Pe_{L} ，The Péclet Number）

$$
\begin{gathered}
\operatorname{Pe}_{L}=\frac{\text { advective transport rate }}{\text { diffusive transport rate }}=\underbrace{\frac{L u}{D}=\operatorname{Re}_{L} \mathrm{Sc}}_{\text {mass transfer }}=\underbrace{\frac{L u}{\alpha}=\operatorname{Re}_{L} \operatorname{Pr}}_{\text {heat transfer }} \\
\begin{array}{cll}
\text { Symbol } & \text { Description } & \text { Units } \\
\hline \operatorname{Re} & \text { Reynolds number } \\
\mathrm{Sc} & \text { Schmidt number } \\
\mathrm{Pr} & \text { Prandtl number } \\
L & \text { characteristic length } & \mathrm{m} \\
u & \text { fluid velocity wrt. object } & \mathrm{m} / \mathrm{s} \\
D & \text { mass diffusion coefficent } & \mathrm{m}^{2} / \mathrm{s} \\
\alpha & \text { thermal diffusivity } & \mathrm{k} /\left(\rho \cdot c_{p}\right) \\
k & \text { thermal conductivity } & \mathrm{W} /\left(m_{r} \cdot K\right) \\
\rho & \text { density } & \mathrm{kg} / \mathrm{m}^{3} \\
c_{p} & \text { heat capacity } & \left(\mathrm{kg} \cdot \mathrm{~m}^{2}\right) /\left(K \cdot \mathrm{~s}^{2}\right) \\
\hline
\end{array}
\end{gathered}
$$

Definition（Sc，The Schmidt Number）

$$
\mathrm{Sc}=\frac{\text { viscous diffusion rate }}{\text { molecular (mass) diffusion rate }}=\frac{\nu}{D}=\frac{\mu}{\rho D}
$$

Symbol	Description	Units
ν	kinematic viscosity	$\mathrm{m}^{2} / \mathrm{s}$
D	mass diffusivity	$\mathrm{m}^{2} / \mathrm{s}$
μ	dynamic viscosity	$\mathrm{kg} /(\mathrm{m} \cdot \mathrm{s}), \mathrm{Pa} \cdot \mathrm{s}$, or $(N \cdot s) / \mathrm{m}^{2}$
ρ	density of the fluid	$\mathrm{kg} / \mathrm{m}^{3}$

Peter Blomgren，〈blomgren．peter＠gmail．com〉
Variable Coefficients

Definition（Pr，The Prandtl Number）

$$
\operatorname{Pr}=\frac{\text { viscous diffusion rate }}{\text { thermal diffusion rate }}=\frac{\nu}{\alpha}=\frac{\mu / \rho}{k /\left(c_{p} \cdot \rho\right)}=\frac{c_{p} \mu}{k}
$$

Symbol	Description	Units
ν	kinematic viscosity	m^{2} / s
α	thermal diffusivity	$\mathrm{k} /\left(\rho \cdot c_{p}\right)$
k	thermal conductivity	$\mathrm{W} /(m \cdot K)$
ρ	density	$\mathrm{kg} / \mathrm{m}^{3}$
c_{p}	heat capacity	$\left(\mathrm{kg} \cdot \mathrm{m}^{2}\right) /\left(K \cdot s^{2}\right)$

The Reynolds number was introduced by Sir George Stokes in 1851，but was named by Arnold Sommerfeld in 1908 after Osborne Reynolds（1842－1912），who popularized its use in 1883.
－Jean Claude Eugène Péclet（10 February 1793 － 6
December 1857），French physicist．
－Osborne Reynolds（23 August 1842 － 21 February 1912）， Irish innovator．
－Ludwig Prandtl（4 February 1875 － 15 August 1953）， German engineer．
－Ernst Heinrich Wilhelm Schmidt（1892－1975），German engineer

