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Recap
Parabolic PDEs
Schemes: Forward/Backward-Time Central Space
Schemes: Crank-Nicolson, Du-Fort Frankel

Last Time 1 of 3

A quick introduction to parabolic PDEs: Our model equation is
the one-dimensional heat equation.

Exact solutions to the 1D heat equation in infinite space, using the
Fourier transform.

The solution corresponds to a damping of the high-frequency
content of the initial condition. ⇒ the parabolic solution operator
is dissipative.

For t > 0, the solution of the heat equation is infinitely
differentiable.

Since parabolic PDEs do not have any characteristics, we need
boundary conditions at every boundary. Typically we specify u
(fixed temperature, “Dirichlet”), the [normal] derivative ux
(temperature flux, “Neumann”), or a mixture thereof.
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Recap
Parabolic PDEs
Schemes: Forward/Backward-Time Central Space
Schemes: Crank-Nicolson, Du-Fort Frankel

Last Time 2 of 3

Numerical Schemes for ut = buxx + f :

Forward-Time Central-Space

vn+1
m − vnm

k
= b

vnm+1 − 2vnm + vnm−1

h2
+ f nm

Explicit; stable when bµ ≤ 1
2 , where µ = k

h2 ; order-(1,2); dissipative of
order 2.

Backward-Time Central-Space

vn+1
m − vnm

k
= b

vn+1
m+1 − 2vn+1

m + vn+1
m−1

h2
+ f n+1

m

Implicit; unconditionally stable; order-(1,2); dissipative of order 2.

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Stability — (4/39)



Recap
Parabolic PDEs
Schemes: Forward/Backward-Time Central Space
Schemes: Crank-Nicolson, Du-Fort Frankel

Last Time 3 of 3

Crank-Nicolson

vn+1
m − vn

m

k
=

b

2

[
vn+1
m+1 − 2vn+1

m + vn+1
m−1

h2
+

vn
m+1 − 2vn

m + vn
m−1

h2

]
+
1

2

[
f n+1
m +f nm

]

Implicit; unconditionally stable; order-(2,2); dissipative of order 2, when
µ is constant.

Du-Fort Frankel (“fixed leapfrog”)

vn+1
m − vn−1

m

2k
= b

vnm+1 − (vn+1
m + vn−1

m ) + vnm−1

h2
+ f nm

Explicit; unconditionally stable; order-(2,2); dissipative of order 2, when
µ is constant. It is only consistent if k/h tends to zero as h and k
go to zero.
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Stability: Lower Order Terms
Dissipation and Smoothness

Boundary Conditions
One-step Schemes

Lower Order Terms and Stability 1 of 2

For hyperbolic equations we have the following result:

Theorem (Stability of One-Step Schemes)

A consistent one-step scheme for the equation

ut + aux + bu = 0

is stable if and only if it is stable for this equation when
b = 0. Moreover, when k = λh, and λ is a constant, the stability
condition on g(hξ, k , h) is

|g(θ, 0, 0)| ≤ 1.

Similar results do not always apply directly to parabolic
equations.
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Stability: Lower Order Terms
Dissipation and Smoothness

Boundary Conditions
One-step Schemes

Lower Order Terms and Stability 2 of 2

The problem is that the contribution to the amplification factor from the first

derivative is sometimes (often?) O
(√

k
)
which is greater than O (k) as k ց 0.

For instance, the forward-time central-space scheme applied to
ut = buxx − aux + cu gives the amplification factor

g = 1− 4bµ sin2
(
θ

2

)
− iaλ sin(θ) + ck

The term ck does not affect stability, but the term containing λ =
√
kµ cannot be

dropped when µ is fixed. In this particular case, we get

|g |2 =

(
1− 4bµ sin2

(
θ

2

))2

+ a2kµ sin2(θ)

and since the first derivative term gives an O (k) contribution to |g |2, it does not
affect stability. (Strikwerda, p.149) This is also true for the backward-time
central-space, and Crank-Nicolson schemes.
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Stability: Lower Order Terms
Dissipation and Smoothness

Boundary Conditions
Crank-Nicolson

Dissipation and Smoothness

The fact that a dissipative one-step scheme for a parabolic equation
generates a numerical solution with increased smoothness as t ր
(provided that µ is constant) is a key result, so lets show that it is indeed
true...

We start with the following theorem

Theorem

A one-step scheme, consistent with

ut = buxx ,

that is dissipative of order 2 with µ constant satisfies

‖vn+1‖22 + ck
n∑

ν=1

‖δ+vν‖22 ≤ ‖v0‖22

for all initial data v0 and n ≥ 0.
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Stability: Lower Order Terms
Dissipation and Smoothness

Boundary Conditions
Crank-Nicolson

Dissipation and Smoothness Proof 1 of 2

Proof: Let c0 be such that |g(θ)|2 ≤ 1− c0 sin
2
(

θ
2

)
(dissipative scheme of order 2).

Then by
v̂ν+1(ξ) = g(θ)v̂ν(ξ),

we have

|v̂ν+1(ξ)|2 = |g(θ)|2|v̂ν(ξ)|2 ≤ |v̂ν(ξ)|2 − c0 sin
2

(
θ

2

)
|v̂ν(ξ)|2;

equivalently:

|v̂ν+1(ξ)|2 − |v̂ν(ξ)|2 + c0 sin
2

(
θ

2

)
|v̂ν(ξ)|2 ≤ 0.

By summing this inequality for ν = 0, . . . , n, we get (using µ = kh−2)

|v̂n+1(ξ)|2 + c0k

µ

n∑

ν=0

∣∣∣∣
1

h
sin

(
θ

2

)
v̂ν(ξ)

∣∣∣∣
2

≤ |v̂0(ξ)|2.

Next we use ∣∣∣∣∣∣

2 sin
(

θ
2

)

h
v̂ν

∣∣∣∣∣∣
=

∣∣∣∣
e iθ − 1

h
v̂ν

∣∣∣∣ = |F(δ+v
ν)(ξ)| .
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Stability: Lower Order Terms
Dissipation and Smoothness

Boundary Conditions
Crank-Nicolson

Dissipation and Smoothness Proof 2 of 2

We get

|v̂n+1(ξ)|2 + ck
n∑

ν=0

|F(δ+v̂
ν)(ξ)|2 ≤ |v̂0(ξ)|2.

Integration over ξ : | ◦̂(ξ) |2 → ‖ ◦̂ ‖2
using Parseval’s relation : ‖ ◦̂ ‖2 → ‖◦‖2

gives...

‖vn+1‖22 + ck
n∑

ν=0

‖δ+vν‖22 ≤ ‖v0‖22

which is the inequality in the theorem. �
Here F(·), denotes the Fourier transform.
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Stability: Lower Order Terms
Dissipation and Smoothness

Boundary Conditions
Crank-Nicolson

Dissipation and Smoothness 1 of 2

We can use the theorem to show that solutions become smoother
with time ⇔ norms of the high-order differences (approximating
high-order derivatives) tend to zero at a faster rate than the norm
of u.

Since |g(θ)| ≤ 1, we have ‖vν+1‖2 ≤ ‖vν‖2. We note that δ+v
(being a finite difference) is also a solution to the scheme,
therefore we have ‖δ+vν+1‖2 ≤ ‖δ+vν‖2. That is, both the
solution and its differences decrease in norm as time increases.

We apply the theorem, and get

‖vn+1‖22 + ct‖δ+vn‖22 ≤ ‖v0‖22
which shows for nk = t > 0 that ‖δ+vn‖2 is bounded, and we
must have

‖δ+vn‖22 ≤
C

t
‖v0‖22 ց 0
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Stability: Lower Order Terms
Dissipation and Smoothness

Boundary Conditions
Crank-Nicolson

Dissipation and Smoothness 2 of 2

The argument can be applied recursively; since δ+v
n satisfies the

difference equations, we find that for nk = t > 0, and any positive
integer r that δr+v

n is also bounded. Thus the solution of the
difference scheme becomes smoother as t increases.

It can be shown that if vnm → u(tn, xm) with order of accuracy p,
then δr+v

n
m → δr+u(tn, xm) with order of accuracy p.

These results hold if and only if the scheme is dissipative.
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Stability: Lower Order Terms
Dissipation and Smoothness

Boundary Conditions
Crank-Nicolson

Example: Crank-Nicolson dx = 1/20, dt = 1/20, µ = 20

Figure: The Crank-Nicolson scheme applied to the initial condition in panel #1, with zero-flux
boundary conditions. We know that Crank-Nicolson is non-dissipative if λ remains constant (see
next slide).
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Stability: Lower Order Terms
Dissipation and Smoothness

Boundary Conditions
Crank-Nicolson

Example: Crank-Nicolson dx = 1/40, dt = 1/40, µ = 40

Figure: The Crank-Nicolson scheme: here we have cut both h and k in half compared with the
previous slide. On the next slide we show the result of keeping µ = k/h2 constant, in which
case the scheme is dissipative.
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Stability: Lower Order Terms
Dissipation and Smoothness

Boundary Conditions
Crank-Nicolson

Example: Crank-Nicolson dx = 1/40, dt = 1/80, µ = 20

Figure: The Crank-Nicolson scheme: here, we finally get some damping in the oscillations of
the solution. — Dissipation is a convergence result!
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Stability: Lower Order Terms
Dissipation and Smoothness

Boundary Conditions
Crank-Nicolson

Example: Crank-Nicolson dx = 1/80, dt = 1/80, µ = 80

Figure: Surprisingly(?), refinining in x brings back the over-shoot artefacts.
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Stability: Lower Order Terms
Dissipation and Smoothness

Boundary Conditions
Crank-Nicolson

Example: Crank-Nicolson dx = 1/20, dt = 1/40, µ = 10

Figure: Coarsening in x (dx = 1/20, instead of dx = 1/40 lessens the “carrying capacity” of
high-frequency content of the grid...
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Stability: Lower Order Terms
Dissipation and Smoothness

Boundary Conditions
Crank-Nicolson

Example: Crank-Nicolson dx = 1/20, dt = 1/80, µ = 5

Figure: Refining in time lowers µ, which reduces oscillations...
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Stability: Lower Order Terms
Dissipation and Smoothness

Boundary Conditions
2nd Order One-Sided; Ghost Points

Boundary Conditions (Again)

Since parabolic problems require boundary conditions at every
boundary, there is less need for “purely” numerical boundary
conditions, compared with hyperbolic problems.

We briefly discuss implementation of the physical boundary
conditions: — Implementing the Dirichlet (specified values at the
boundary points) boundary conditions is straight-forward.

The Neumann (specified flux/derivative) is more of a problem; for
instance, one-sided differences

∂u(tn, x0)

∂x
≈ vn1 − vn0

h
,

∂u(tn, xM)

∂x
≈ vnM − vnM−1

h

can be used, but these are however only first-order accurate
and will degrade the accuracy of higher-order schemes.
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Stability: Lower Order Terms
Dissipation and Smoothness

Boundary Conditions
2nd Order One-Sided; Ghost Points

More Accurate Boundary Conditions 1 of 2

Second order one-sided accurate boundary conditions are given by

∂u(tn, x0)

∂x
≈ −vn2 + 4vn1 − 3vn0

2h
,

∂u(tn, xM)

∂x
≈ vnM−2 − 4vnM−1 + 3vnM

2h

It is sometimes useful to use second-order central differences and
introduce “ghost-points” for the boundary conditions, e.g.

∂u(tn, x0)

∂x
≈ vn1 − vn−1

2h
.

How is this useful? — Consider a given flux condition
ux(tn, x0) = ϕ(tn), then

vn1 − vn−1

2h
= ϕn ⇔ vn−1 = vn1 − 2hϕn.
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Stability: Lower Order Terms
Dissipation and Smoothness

Boundary Conditions
2nd Order One-Sided; Ghost Points

More Accurate Boundary Conditions 2 of 2

Now, if we are “leap-frogging” (Du-Fort Frankel style) the scheme
can be applied at the boundary (m = 0)

vn+1
0 − vn−1

0

2k
= b

vn1 − (vn+1
0 + vn−1

0 ) + vn−1

h2
+ f nm,

vn+1
0 − vn−1

0

2k
= b

vn1 − (vn+1
0 + vn−1

0 ) + vn1 − 2hϕn

h2
+ f nm.

Ideas like these are commonly used.
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Convection-Diffusion
Variable Coefficients

Numerics
Upwind Differences

The Convection-Diffusion Equation

Many physical processes are not described by convection (transport, e.g.
the one-way wave-equation) or diffusion (e.g. the heat equation) alone.

An oil-spill in the ocean or a river is spreading by diffusion, while being
transported by currents; the same goes for your daily multi-vitamin
traveling through your bowels and diffusing into your bloodstream.

These physical processes are better described by the
convection-diffusion equation

ut + a ux = b uxx ,

Here a is the convection speed, and b is the diffusion coefficient.
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Convection-Diffusion
Variable Coefficients

Numerics
Upwind Differences

The Convection-Diffusion Equation Numerics, 1 of 3

First, we consider the forward-time central-space scheme

vn+1
m − vn

m

k
+ a

vn
m+1 − vn

m−1

2h
= b

vn
m+1 − 2vn

m + vn
m−1

h2
,

which is first order in time, and second order in space. Since stability
requires bµ ≤ 1/2, we must have k ∼ h2, so the scheme is second-order
overall.

For convenience, lets assume a > 0, define µ = k
h2 and α = ha

2b = aλ
2bµ , we

can write the scheme as

vn+1
m = (1− 2bµ)vn

m + bµ(1− α)vn
m+1 + bµ(1 + α)vn

m−1.

Based on previous discussion of parabolic PDEs, we know that
‖u(t, ·)‖∞ ≤ ‖u(t ′, ·)‖∞ if t > t ′ (the peak-value is non-increasing).
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The Convection-Diffusion Equation Numerics, 2 of 3

In order to guarantee that the numerical solution of the difference
scheme

vn+1
m = (1− 2bµ)vnm + bµ(1− α)vnm+1 + bµ(1 + α)vnm−1,

also is non-increasing, we must have α ≤ 1 (and bµ ≤ 1/2), when
these two conditions are satisfied, we have (let vn∗ = maxm |vnm|)

|vn+1
m | ≤ (1− 2bµ)|vnm|+ bµ(1− α)|vnm+1|+ bµ(1 + α)|vnm−1|

≤ vn∗ [(1− 2bµ) + bµ(1− α) + bµ(1 + α)] = vn∗ .

So that |vn+1
∗′ | ≤ |vn∗ |, i.e. the peak-value of the numerical solution

is non-increasing.
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The Convection-Diffusion Equation Numerics, 3 of 3

The condition α ≤ 1, can be re-written

h ≤ 2b

a
,

which is a restriction on the spatial grid-spacing.

The quantity a
b corresponds to the Reynolds number in fluid flow, or

the Peclet number in heat flow.

The quantity α = ha
2b (sometimes 2α) is often called the cell Reynolds

number or the cell Peclet number.

If the grid-spacing h is too large, then the numerical solution cannot
resolve the physics and oscillations occur. These oscillations are not due
to instability (as long as the stability criterion is satisfied, of course) and
do not grow; they are only a result of inadequate resolution.
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The Convection-Diffusion Equation Example #1

Figure: (Forward-Time Central-Space) Convection-diffusion with a = 10, b = 0.1, h = 0.1 >
0.02, k = 0.0025, µ = 1/4 < 1/2. We are stable, but have not resolved the physics.
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The Convection-Diffusion Equation Example #2

Figure: (Forward-Time Central-Space) Convection-diffusion with a = 10, b = 0.1, h = 0.02 ≤
0.02, k = 0.0001, µ = 1/4 < 1/2. We are stable, and have resolved the physics.
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The Convection-Diffusion Equation Upwind Differences, 1 of 3

In example #2 we had to push the resolution to h = 0.02 (601 points in
[−1, 11]) and k = 0.0001 (10001 time-steps in [0, 1]), for a grand total of
6,010,601 space-time grid points. That is a ridiculously high price to pay
for such a simple 1D problem!!!

One way to avoid the resolution restriction is to use upwind differencing
of the convection term. This corresponds to a switching between
backward differencing when a > 0, and forward differencing when a < 0,
e.g. only differencing in the direction where the (hyperbolic)
characteristics come from:

vn+1
m − vn

m

k
+ a+

[
vn
m − vn

m−1

h

]
+ a−

[
vn
m+1 − vn

m

h

]
= b

vn
m+1 − 2vn

m + vn
m−1

h2

or
vn+1
m = [1− 2bµ(1 + α)] vn

m + bµvn
m+1 + bµ(1 + 2α)vn

m−1
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The Convection-Diffusion Equation Upwind Differences, 2 of 3

The restriction h ≤ 2b
|a| is replaced by

2bµ+ |a|λ ≤ 1,

which is much less restrictive when b is small and a large. If we
want µ = 1/4, i.e. k = h2/4, then we must have h ≤ 4

a

(
1− b

2

)

which with a = 10 and b = 0.1 as in the previous examples is 0.38
— 19 times that of the previous restriction.

We have, however, also sacrificed the spatial second order
accuracy, since the first-order upwind difference is first order.
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The Convection-Diffusion Equation Example #3

Figure: (Upwinding) Convection-diffusion with a = 10, b = 0.1, h = 0.35 ≤ 0.38, k = 0.030625,
µ = 1/4 < 1/2. We are stable, and have resolved the physics.
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The Convection-Diffusion Equation Example #4

Figure: (Upwinding) Convection-diffusion with a = 10, b = 0.1, h = 0.40 ≥ 0.38, k = 0.04,
µ = 1/4 < 1/2. We are stable, but have not resolved the physics.
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The Convection-Diffusion Equation Upwind Differences, 3 of 3

The upwind scheme

vn+1
m − vn

m

k
+ a

vn
m − vn

m−1

h
= b

vn
m+1 − 2vn

m + vn
m−1

h2
,

can be rewritten in the form

vn+1
m − vn

m

k
+ a

vn
m+1 − vn

m−1

2h
=

(
b +

ah

2

)
vn
m+1 − 2vn

m + vn
m−1

h2
.

We see that upwinding corresponds to changing the diffusion coefficient,
or adding artificial viscosity to suppress oscillations.

There has been much debate regarding the value of these
artificial-viscosity solutions; clearly they may only give qualitative
information about the true solution.
More details on solving the convection-diffusion equation numerically can be found
in K.W. Morton, Numerical Solution of Convection-Diffusion Problems, Chapman
& Hall, London, 1996.
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When the diffusivity b is a function of time and space, e.g. of the
common form

ut = [b(t, x)ux ]x ,

the difference schemes must be chosen to maintain consistency.

For example, the forward-time central-space scheme for this problem is
given by

vn+1
m − vn

m

k
=

b(tn, xm+1/2)(v
n
m+1 − vn

m)− b(tn, xm−1/2)(v
n
m − vn

m−1)

h2
.

This scheme is consistent if

b(t, x)µ ≤ 1

2
,

for all values of (t, x) in the domain of computation...
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Looking Ahead...

• Systems of PDEs in Higher Dimensions.

• Second-Order Equations.

• Analysis of Well-Posed and Stable Problem.

• Convergence Estimates for IVPs.

• Well-Posed and Stable IBVPs.

• Elliptical PDEs and Difference Schemes.

• Linear Iterative Methods.

• The Method of Steepest Descent and the Conjugate Gradient
Method.

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Variable Coefficients — (34/39)

Supplemental Material Reference Material

The Reynolds Number

Definition (ReL, The Reynolds Number)

ReL =
ρuL

µ
=

uL

ν
,

Symbol Description Units
ρ density of the fluid kg/m3

u fluid velocity wrt. object m/s
L characteristic length m
µ fluid dynamic viscosity Pa · s, or Ns/m2, or kg/(m · s)
ν fluid kinematic viscosity m2/s
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The Péclet Number

Definition (PeL, The Péclet Number)

PeL =
advective transport rate

diffusive transport rate
=

Lu

D
= ReL Sc

︸ ︷︷ ︸
mass transfer

=
Lu

α
= ReL Pr

︸ ︷︷ ︸
heat transfer

Symbol Description Units
Re Reynolds number
Sc Schmidt number
Pr Prandtl number
L characteristic length m

u fluid velocity wrt. object m/s

D mass diffusion coefficent m2/s

α thermal diffusivity k/(ρ · cp)
k thermal conductivity W /(m · K)

ρ density kg/m3

cp heat capacity (kg ·m2)/(K · s2)
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The Schmidt Number

Definition (Sc, The Schmidt Number)

Sc =
viscous diffusion rate

molecular (mass) diffusion rate
=

ν

D
=

µ

ρD

Symbol Description Units

ν kinematic viscosity m2/s

D mass diffusivity m2/s

µ dynamic viscosity kg/(m · s), Pa · s, or (N · s)/m2

ρ density of the fluid kg/m3

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Variable Coefficients — (37/39)

Supplemental Material Reference Material

The Prandtl Number

Definition (Pr, The Prandtl Number)

Pr =
viscous diffusion rate

thermal diffusion rate
=

ν

α
=

µ/ρ

k/(cp · ρ)
=

cpµ

k

Symbol Description Units

ν kinematic viscosity m2/s

α thermal diffusivity k/(ρ · cp)
k thermal conductivity W /(m · K )

ρ density kg/m3

cp heat capacity (kg ·m2)/(K · s2)

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Variable Coefficients — (38/39)

Supplemental Material Reference Material

A Bunch of physicists and Engineers...

The Reynolds number was introduced by Sir George Stokes in
1851, but was named by Arnold Sommerfeld in 1908 after
Osborne Reynolds (1842 — 1912), who popularized its use in 1883.

Jean Claude Eugène Péclet (10 February 1793 — 6
December 1857), French physicist.

Osborne Reynolds (23 August 1842 — 21 February 1912),
Irish innovator.

Ludwig Prandtl (4 February 1875 — 15 August 1953),
German engineer.

Ernst Heinrich Wilhelm Schmidt (1892 — 1975), German
engineer
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