Numerical Solutions to PDEs

Lecture Notes #11 — Parabolic PDEs Stability, Boundary Conditions; Convection-Diffusion; Variable Coefficients

> Peter Blomgren, \(\text{blomgren.peter@gmail.com} \)

Department of Mathematics and Statistics
Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego, CA 92182-7720

http://terminus.sdsu.edu/

Spring 2018

Outline

- Recap
 - Parabolic PDFs
 - Schemes: Forward/Backward-Time Central Space
 - Schemes: Crank-Nicolson, Du-Fort Frankel
- 2 Stability: Lower Order Terms
 - One-step Schemes
- Oissipation and Smoothness
 - Crank-Nicolson
- 4 Boundary Conditions
 - 2nd Order One-Sided: Ghost Points
- 6 Convection-Diffusion
 - Numerics
 - Upwind Differences
 - 6 Variable Coefficients

Last Time

1 of 3

A quick introduction to parabolic PDEs: Our model equation is the one-dimensional heat equation.

Exact solutions to the 1D heat equation in infinite space, using the Fourier transform.

The solution corresponds to a damping of the high-frequency content of the initial condition. \Rightarrow the parabolic solution operator is **dissipative**.

For t > 0, the solution of the heat equation is infinitely differentiable.

Since parabolic PDEs do not have any characteristics, we need boundary conditions at **every** boundary. Typically we specify u (fixed temperature, "Dirichlet"), the [normal] derivative u_x (temperature flux, "Neumann"), or a mixture thereof.

Last Time

Numerical Schemes for $u_t = bu_{xx} + f$:

Forward-Time Central-Space

$$\frac{v_m^{n+1} - v_m^n}{k} = b \frac{v_{m+1}^n - 2v_m^n + v_{m-1}^n}{h^2} + f_m^n$$

Explicit; stable when $b\mu \leq \frac{1}{2}$, where $\mu = \frac{k}{h^2}$; order-(1,2); dissipative of order 2.

Backward-Time Central-Space

$$\frac{v_m^{n+1} - v_m^n}{k} = b \frac{v_{m+1}^{n+1} - 2v_m^{n+1} + v_{m-1}^{n+1}}{h^2} + f_m^{n+1}$$

Implicit; unconditionally stable; order-(1,2); dissipative of order 2.

Crank-Nicolson

$$\frac{v_m^{n+1} - v_m^n}{k} = \frac{b}{2} \left[\frac{v_{m+1}^{n+1} - 2v_m^{n+1} + v_{m-1}^{n+1}}{h^2} + \frac{v_{m+1}^n - 2v_m^n + v_{m-1}^n}{h^2} \right] + \frac{1}{2} \left[f_m^{n+1} + f_m^n \right]$$

Implicit; unconditionally stable; order-(2,2); dissipative of order 2, when μ is constant.

Du-Fort Frankel ("fixed leapfrog")

$$\frac{v_m^{n+1} - v_m^{n-1}}{2k} = b \frac{v_{m+1}^n - (v_m^{n+1} + v_m^{n-1}) + v_{m-1}^n}{h^2} + f_m^n$$

Explicit; unconditionally stable; order-(2,2); dissipative of order 2, when μ is constant. It is only consistent if k/h tends to zero as h and k go to zero.

Lower Order Terms and Stability

For **hyperbolic** equations we have the following result:

Theorem (Stability of One-Step Schemes)

A consistent one-step scheme for the equation

$$u_t + au_x + bu = 0$$

is stable if and only if it is stable for this equation when $\mathbf{b}=\mathbf{0}$. Moreover, when $k=\lambda h$, and λ is a constant, the stability condition on $g(h\xi,k,h)$ is

$$|g(\theta,0,0)| \le 1.$$

Similar results do not always apply directly to parabolic equations.

Lower Order Terms and Stability

The problem is that the contribution to the amplification factor from the first derivative is sometimes (often?) $\mathcal{O}\left(\sqrt{k}\right)$ which is greater than $\mathcal{O}\left(k\right)$ as $k \searrow 0$.

For instance, the forward-time central-space scheme applied to $u_t = bu_{xx} - \mathbf{au_x} + \mathbf{cu}$ gives the amplification factor

$$g = 1 - 4b\mu \sin^2\left(\frac{\theta}{2}\right) - \mathbf{ia}\lambda \sin(\theta) + \mathbf{ck}$$

The term ck does not affect stability, but the term containing $\lambda=\sqrt{\mathbf{k}\mu}$ cannot be dropped when μ is fixed. In this particular case, we get

$$|g|^2 = \left(1 - 4b\mu \sin^2\left(\frac{\theta}{2}\right)\right)^2 + \mathbf{a}^2\mathbf{k}\mu \sin^2(\theta)$$

and since the first derivative term gives an $\mathcal{O}(k)$ contribution to $|g|^2$, it does not affect stability. (Strikwerda, p.149) This is also true for the backward-time central-space, and Crank-Nicolson schemes.

The fact that a dissipative one-step scheme for a parabolic equation generates a numerical solution with increased smoothness as $t\nearrow$ (provided that μ is constant) is a key result, so lets show that it is indeed true...

We start with the following theorem

Theorem

A one-step scheme, consistent with

$$u_t = bu_{xx}$$

that is dissipative of order 2 with μ constant satisfies

$$\|v^{n+1}\|_2^2 + ck \sum_{\nu=1}^n \|\delta_+ v^{\nu}\|_2^2 \le \|v^0\|_2^2$$

for all initial data v^0 and n > 0.

Proof 1 of 2

Proof: Let c_0 be such that $|g(\theta)|^2 \le 1 - c_0 \sin^2\left(\frac{\theta}{2}\right)$ (dissipative scheme of order 2).

Then by

$$\widehat{\mathbf{v}}^{\nu+1}(\xi) = \mathbf{g}(\theta)\widehat{\mathbf{v}}^{\nu}(\xi),$$

we have

$$|\widehat{v}^{\nu+1}(\xi)|^2=|g(\theta)|^2|\widehat{v}^{\nu}(\xi)|^2\leq |\widehat{v}^{\nu}(\xi)|^2-c_0\sin^2\left(\frac{\theta}{2}\right)|\widehat{v}^{\nu}(\xi)|^2;$$

equivalently:

$$|\widehat{v}^{\nu+1}(\xi)|^2-|\widehat{v}^{\nu}(\xi)|^2+c_0\sin^2\left(\frac{\theta}{2}\right)|\widehat{v}^{\nu}(\xi)|^2\leq 0.$$

By summing this inequality for $\nu=0,\ldots,n$, we get (using $\mu=kh^{-2}$)

$$|\widehat{v}^{n+1}(\xi)|^2 + \frac{c_0 k}{\mu} \sum_{\nu=0}^n \left| \frac{1}{h} \sin\left(\frac{\theta}{2}\right) \widehat{v}^{\nu}(\xi) \right|^2 \leq |\widehat{v}^0(\xi)|^2.$$

Next we use

$$\left|\frac{2\sin\left(\frac{\theta}{2}\right)}{h}\widehat{v}^{\nu}\right| = \left|\frac{e^{i\theta}-1}{h}\widehat{v}^{\nu}\right| = \left|\mathcal{F}(\delta_{+}v^{\nu})(\xi)\right|.$$

Stability

We get

$$|\widehat{v}^{n+1}(\xi)|^2 + ck \sum_{\nu=0}^n |\mathcal{F}(\delta_+ \widehat{v}^{\nu})(\xi)|^2 \le |\widehat{v}^0(\xi)|^2.$$

Integration over ξ : $|\widehat{\circ}(\xi)|^2 \rightarrow \|\widehat{\circ}\|^2$ using Parseval's relation : $\|\widehat{\circ}\|^2 \rightarrow \|\widehat{\circ}\|^2$

gives...

$$\|v^{n+1}\|_2^2 + ck \sum_{\nu=0}^n \|\delta_+ v^{\nu}\|_2^2 \le \|v^0\|_2^2$$

which is the inequality in the theorem. \Box Here $\mathcal{F}(\cdot)$, denotes the Fourier transform.

We can use the theorem to show that solutions become smoother with time \Leftrightarrow norms of the high-order differences (approximating high-order derivatives) tend to zero at a faster rate than the norm of u.

Since $|g(\theta)| \le 1$, we have $||v^{\nu+1}||_2 \le ||v^{\nu}||_2$. We note that $\delta_+ v$ (being a finite difference) is also a solution to the scheme, therefore we have $||\delta_+ v^{\nu+1}||_2 \le ||\delta_+ v^{\nu}||_2$. That is, both the solution and its differences decrease in norm as time increases.

We apply the theorem, and get

$$||v^{n+1}||_2^2 + ct||\delta_+ v^n||_2^2 \le ||v^0||_2^2$$

which shows for nk = t > 0 that $\|\delta_+ v^n\|_2$ is bounded, and we must have

$$\|\delta_+ v^n\|_2^2 \le \frac{C}{t} \|v^0\|_2^2 \searrow 0$$

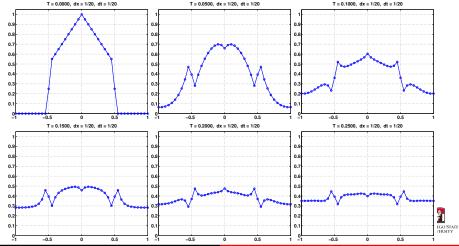
The argument can be applied recursively; since $\delta_+ v^n$ satisfies the difference equations, we find that for nk=t>0, and any positive integer r that $\delta_+^r v^n$ is also bounded. Thus the solution of the difference scheme becomes smoother as t increases.

It can be shown that if $v_m^n \to u(t_n, x_m)$ with order of accuracy p, then $\delta_+^r v_m^n \to \delta_+^r u(t_n, x_m)$ with order of accuracy p.

These results hold **if and only if** the scheme is dissipative.

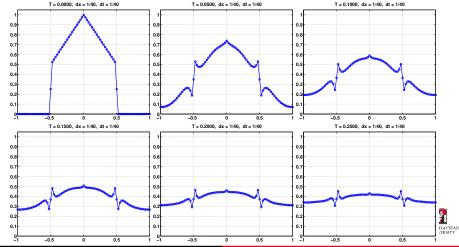
$$dx = 1/20$$
, $dt = 1/20$, $\mu = 20$

Figure: The Crank-Nicolson scheme applied to the initial condition in panel #1, with zero-flux boundary conditions. We know that Crank-Nicolson is non-dissipative if λ remains constant (see next slide).



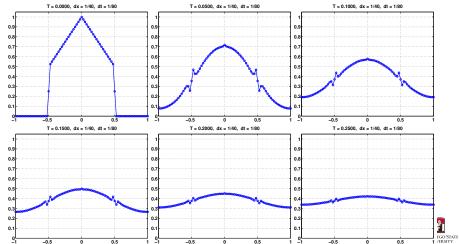
dx = 1/40, dt = 1/40, $\mu = 40$

Figure: The Crank-Nicolson scheme: here we have cut both h and k in half compared with the previous slide. On the next slide we show the result of keeping $\mu=k/h^2$ constant, in which case the scheme is dissipative.



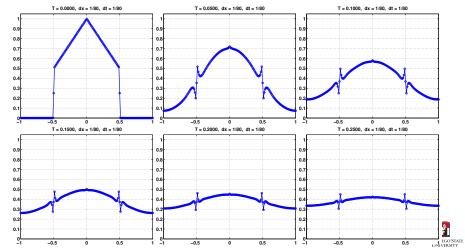
$$dx = 1/40$$
, $dt = 1/80$, $\mu = 20$

Figure: The Crank-Nicolson scheme: here, we finally get some damping in the oscillations of the solution. — Dissipation is a convergence result!



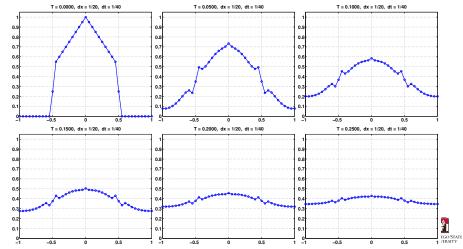
$$dx = 1/80$$
, $dt = 1/80$, $\mu = 80$

Figure: Surprisingly(?), refinining in x brings back the over-shoot artefacts.



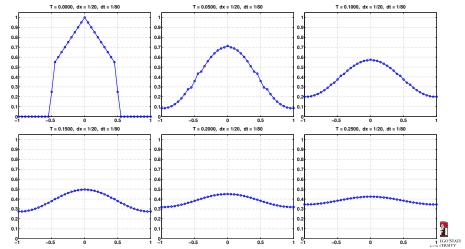
$$dx = 1/20$$
, $dt = 1/40$, $\mu = 10$

Figure: Coarsening in x (dx = 1/20, instead of dx = 1/40 lessens the "carrying capacity" of high-frequency content of the grid...



dx = 1/20, dt = 1/80, $\mu = 5$

Figure: Refining in time lowers μ , which reduces oscillations...



Since parabolic problems require boundary conditions at every boundary, there is **less need for "purely" numerical boundary conditions**, compared with hyperbolic problems.

We briefly discuss implementation of the **physical boundary conditions**: — Implementing the Dirichlet (specified values at the boundary points) boundary conditions is straight-forward.

The Neumann (specified flux/derivative) is more of a problem; for instance, **one-sided differences**

$$\frac{\partial u(t_n,x_0)}{\partial x} \approx \frac{v_1^n - v_0^n}{h}, \quad \frac{\partial u(t_n,x_M)}{\partial x} \approx \frac{v_M^n - v_{M-1}^n}{h}$$

can be used, but these are however only first-order accurate and will degrade the accuracy of higher-order schemes.

More Accurate Boundary Conditions

Second order one-sided accurate boundary conditions are given by

$$\frac{\partial \textit{u}(\textit{t}_\textit{n},\textit{x}_0)}{\partial \textit{x}} \approx \frac{-\textit{v}_2^\textit{n} + 4\textit{v}_1^\textit{n} - 3\textit{v}_0^\textit{n}}{2\textit{h}}, \quad \frac{\partial \textit{u}(\textit{t}_\textit{n},\textit{x}_M)}{\partial \textit{x}} \approx \frac{\textit{v}_{M-2}^\textit{n} - 4\textit{v}_{M-1}^\textit{n} + 3\textit{v}_M^\textit{n}}{2\textit{h}}$$

It is sometimes useful to use second-order central differences and introduce "ghost-points" for the boundary conditions, *e.g.*

$$\frac{\partial u(t_n,x_0)}{\partial x} \approx \frac{v_1^n - \textcolor{red}{\mathbf{v}_{-1}^n}}{2h}.$$

How is this useful? — Consider a given flux condition $u_x(t_n, x_0) = \varphi(t_n)$, then

$$\frac{v_1^n - \mathbf{v_{-1}^n}}{2h} = \varphi_n \quad \Leftrightarrow \quad \mathbf{v_{-1}^n} = v_1^n - 2h\varphi_n.$$

More Accurate Boundary Conditions

Now, if we are "leap-frogging" (Du-Fort Frankel style) the scheme can be applied at the boundary (m = 0)

$$\frac{v_0^{n+1} - v_0^{n-1}}{2k} = b \frac{v_1^n - (v_0^{n+1} + v_0^{n-1}) + \mathbf{v_{-1}^n}}{h^2} + f_m^n,$$

$$\frac{v_0^{n+1}-v_0^{n-1}}{2k}=b\frac{v_1^n-(v_0^{n+1}+v_0^{n-1})+v_1^n-2h\varphi_n}{h^2}+f_m^n.$$

Ideas like these are commonly used.

Many physical processes are not described by convection (transport, e.g. the one-way wave-equation) or diffusion (e.g. the heat equation) alone.

An oil-spill in the ocean or a river is spreading by diffusion, while being transported by currents; the same goes for your daily multi-vitamin traveling through your bowels and diffusing into your bloodstream.

These physical processes are better described by the **convection-diffusion** equation

$$u_t + \underbrace{a} u_x = \underbrace{b} u_{xx},$$

Here a is the **convection speed**, and b is the **diffusion coefficient**.

First, we consider the forward-time central-space scheme

$$\frac{v_m^{n+1} - v_m^n}{k} + a \frac{v_{m+1}^n - v_{m-1}^n}{2h} = b \frac{v_{m+1}^n - 2v_m^n + v_{m-1}^n}{h^2},$$

which is first order in time, and second order in space. Since stability requires $b\mu \leq 1/2$, we must have $k \sim h^2$, so the scheme is second-order overall.

For convenience, lets assume a>0, define $\mu=\frac{k}{h^2}$ and $\alpha=\frac{ha}{2b}=\frac{a\lambda}{2b\mu}$, we can write the scheme as

$$v_m^{n+1} = (1 - 2b\mu)v_m^n + b\mu(1 - \alpha)v_{m+1}^n + b\mu(1 + \alpha)v_{m-1}^n.$$

Based on previous discussion of parabolic PDEs, we know that $\|u(t,\cdot)\|_{\infty} \leq \|u(t',\cdot)\|_{\infty}$ if t>t' (the peak-value is non-increasing).

In order to guarantee that the numerical solution of the difference scheme

$$v_m^{n+1} = (1 - 2b\mu)v_m^n + b\mu(1 - \alpha)v_{m+1}^n + b\mu(1 + \alpha)v_{m-1}^n,$$

also is non-increasing, we must have $\alpha \leq 1$ (and $b\mu \leq 1/2$), when these two conditions are satisfied, we have (let $v_*^n = \max_m |v_m^n|$)

$$|v_m^{n+1}| \leq (1-2b\mu)|v_m^n| + b\mu(1-\alpha)|v_{m+1}^n| + b\mu(1+\alpha)|v_{m-1}^n| \leq v_*^n [(1-2b\mu) + b\mu(1-\alpha) + b\mu(1+\alpha)] = v_*^n.$$

So that $|v_{*'}^{n+1}| \leq |v_{*}^{n}|$, *i.e.* the peak-value of the numerical solution is non-increasing.

The condition $\alpha \leq 1$, can be re-written

$$h \leq \frac{2b}{a}$$
,

which is a restriction on the spatial grid-spacing.

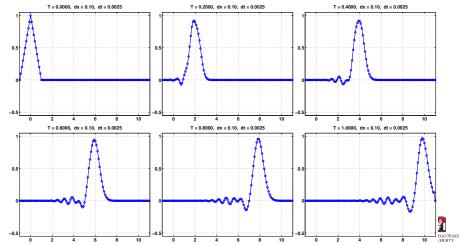
The quantity $\frac{a}{b}$ corresponds to the **Reynolds number** in fluid flow, or the **Peclet number** in heat flow.

The quantity $\alpha = \frac{ha}{2b}$ (sometimes 2α) is often called the **cell Reynolds** number or the **cell Peclet number**.

If the grid-spacing h is too large, then the numerical solution cannot resolve the physics and oscillations occur. These oscillations are **not** due to instability (as long as the stability criterion is satisfied, of course) and do not grow; they are only a result of inadequate resolution.

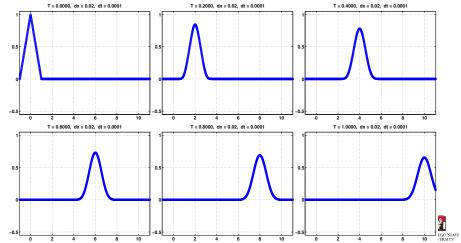
Example #1

Figure: (Forward-Time Central-Space) Convection-diffusion with a=10, b=0.1, h=0.1>0.02, k=0.0025, $\mu=1/4<1/2$. We are stable, but have not resolved the physics.



Example #2

Figure: (Forward-Time Central-Space) Convection-diffusion with $a=10,\ b=0.1,\ h=0.02\leq 0.02,\ k=0.0001,\ \mu=1/4<1/2.$ We are stable, and have resolved the physics.



Upwind Differences, 1 of 3

In example #2 we had to push the resolution to h = 0.02 (601 points in [-1, 11]) and k = 0.0001 (10001 time-steps in [0, 1]), for a grand total of 6,010,601 space-time grid points. That is a ridiculously high price to pay for such a simple 1D problem!!!

One way to avoid the resolution restriction is to use upwind differencing of the convection term. This corresponds to a switching between backward differencing when a > 0, and forward differencing when a < 0, e.g. only differencing in the direction where the (hyperbolic) characteristics come from:

$$\frac{v_m^{n+1} - v_m^n}{k} + a^+ \left[\frac{v_m^n - v_{m-1}^n}{h} \right] + a^- \left[\frac{v_{m+1}^n - v_m^n}{h} \right] = b \frac{v_{m+1}^n - 2v_m^n + v_{m-1}^n}{h^2}$$

or

$$v_m^{n+1} = [1 - 2b\mu(1+\alpha)]v_m^n + b\mu v_{m+1}^n + b\mu(1+2\alpha)v_{m-1}^n$$

Upwind Differences, 2 of 3

The restriction $h \leq \frac{2b}{|a|}$ is replaced by

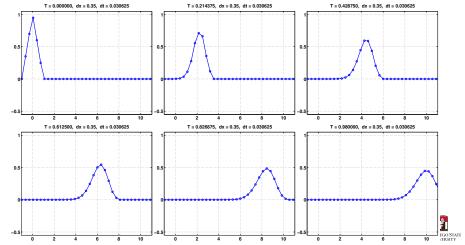
$$2b\mu + |a|\lambda \le 1,$$

which is much less restrictive when b is small and a large. If we want $\mu=1/4$, i.e. $k=h^2/4$, then we must have $h\leq \frac{4}{a}\left(1-\frac{b}{2}\right)$ which with a=10 and b=0.1 as in the previous examples is 0.38 — 19 times that of the previous restriction.

We have, however, also sacrificed the spatial second order accuracy, since the first-order upwind difference is first order.

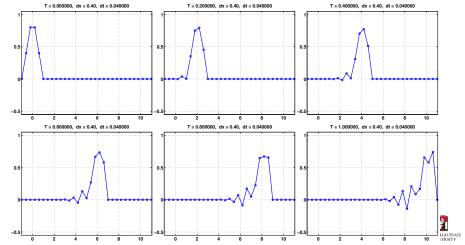
Example #3

Figure: (Upwinding) Convection-diffusion with a=10, b=0.1, $h=0.35 \le 0.38$, k=0.030625, $\mu=1/4 < 1/2$. We are stable, and have resolved the physics.



Example #4

Figure: (Upwinding) Convection-diffusion with $a=10,\ b=0.1,\ h=0.40\geq0.38,\ k=0.04,\ \mu=1/4<1/2.$ We are stable, but have not resolved the physics.



Upwind Differences, 3 of 3

The upwind scheme

$$\frac{v_m^{n+1} - v_m^n}{k} + a \frac{v_m^n - v_{m-1}^n}{h} = b \frac{v_{m+1}^n - 2v_m^n + v_{m-1}^n}{h^2},$$

can be rewritten in the form

$$\frac{v_m^{n+1}-v_m^n}{k}+a\frac{v_{m+1}^n-v_{m-1}^n}{2h}=\left(b+\frac{ah}{2}\right)\frac{v_{m+1}^n-2v_m^n+v_{m-1}^n}{h^2}.$$

We see that upwinding corresponds to changing the diffusion coefficient, or **adding artificial viscosity** to suppress oscillations.

There has been much debate regarding the value of these artificial-viscosity solutions; clearly they may only give qualitative information about the true solution.

More details on solving the convection-diffusion equation numerically can be found in $\mathrm{K.W.\ Morton}$, *Numerical Solution of Convection-Diffusion Problems*, Chapman & Hall, London, 1996.

Variable Coefficients

When the diffusivity b is a function of time and space, e.g. of the common form

$$u_t = \left[b(t,x)u_x\right]_x,$$

the difference schemes must be chosen to maintain consistency.

For example, the forward-time central-space scheme for this problem is given by

$$\frac{v_m^{n+1}-v_m^n}{k}=\frac{b(t_n,x_{m+1/2})(v_{m+1}^n-v_m^n)-b(t_n,x_{m-1/2})(v_m^n-v_{m-1}^n)}{h^2}.$$

This scheme is consistent if

$$b(t,x)\mu\leq\frac{1}{2},$$

for all values of (t,x) in the domain of computation...

Looking Ahead...

- Systems of PDEs in Higher Dimensions.
- Second-Order Equations.
- Analysis of Well-Posed and Stable Problem.
- Convergence Estimates for IVPs.
- Well-Posed and Stable IBVPs.
- Elliptical PDEs and Difference Schemes.
- Linear Iterative Methods.
- The Method of Steepest Descent and the Conjugate Gradient Method.

The Reynolds Number

Definition (Re_L, The Reynolds Number)

$$\operatorname{Re}_{L} = \frac{\rho u L}{\mu} = \frac{u L}{\nu},$$

Symbol	Description	Units
ρ	density of the fluid	kg/m^3
и	fluid velocity wrt. object	m/s
L	characteristic length	m
μ	fluid dynamic viscosity	$Pa \cdot s$, or Ns/m^2 , or $kg/(m \cdot s)$
ν	fluid kinematic viscosity	m^2/s

The Péclet Number

Definition (Pe_L, The Péclet Number)

$$Pe_L = \frac{\text{advective transport rate}}{\text{diffusive transport rate}} = \underbrace{\frac{Lu}{D} = \text{Re}_L \, \text{Sc}}_{\text{mass transfer}} = \underbrace{\frac{Lu}{\alpha} = \text{Re}_L \, \text{Pr}}_{\text{heat transfer}}$$

Symbol	Description	Units
Re	Reynolds number	
Sc	Schmidt number	
\Pr	Prandtl number	
L	characteristic length	m
и	fluid velocity wrt. object	m/s
D	mass diffusion coefficent	m^2/s
α	thermal diffusivity	$k/(\rho \cdot c_p)$
k	thermal conductivity	$W/(m \cdot K)$
ho	density	kg/m^3
c_p	heat capacity	$(\mathrm{kg}\cdot m^2)/(K\cdot s^2)$

The Schmidt Number

Definition (Sc, The Schmidt Number)

$$\mathrm{Sc} = \frac{\mathrm{viscous\ diffusion\ rate}}{\mathrm{molecular\ (mass)\ diffusion\ rate}} = \frac{\nu}{D} = \frac{\mu}{\rho D}$$

Symbol	Description	Units
ν	kinematic viscosity	m^2/s
D	mass diffusivity	m^2/s
μ	dynamic viscosity	$kg/(m \cdot s)$, $Pa \cdot s$, or $(N \cdot s)/m^2$
ρ	density of the fluid	kg/m^3

The Prandtl Number

Definition (Pr, The Prandtl Number)

$$\Pr = \frac{\text{viscous diffusion rate}}{\text{thermal diffusion rate}} = \frac{\nu}{\alpha} = \frac{\mu/\rho}{k/(c_p \cdot \rho)} = \frac{c_p \mu}{k}$$

Symbol	Description	Units
ν	kinematic viscosity	m^2/s
α	thermal diffusivity	$k/(\rho \cdot c_p)$
k	thermal conductivity	$W/(m \cdot K)$
ho	density	kg/m^3
c_p	heat capacity	$(\mathrm{kg}\cdot m^2)/(K\cdot s^2)$

A Bunch of physicists and Engineers...

The Reynolds number was introduced by Sir George **Stokes** in 1851, but was named by Arnold **Sommerfeld** in 1908 after Osborne Reynolds (1842 — 1912), who popularized its use in 1883.

- Jean Claude Eugène Péclet (10 February 1793 6
 December 1857), French physicist.
- Osborne Reynolds (23 August 1842 21 February 1912), Irish innovator.
- Ludwig Prandtl (4 February 1875 15 August 1953),
 German engineer.
- Ernst Heinrich Wilhelm Schmidt (1892 1975), German engineer

