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Recap Last Time

Last Time

Discussion: Lower Order Terms and Stability

Proof: Dissipation and Smoothness

Example: Crank-Nicolson in Non-Dissipative Mode (λ fixed)

Example: Crank-Nicolson in Dissipative Mode (µ fixed)

Boundary Conditions: accuracy, ghost points

Convection-Diffusion: Grid restrictions due to the physics
(Reynolds or Peclet number) of the problem; upwinding.
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The World is not One-Dimensional!

In order to model interesting physical phenomena, we often are
forced to leave the confines of our one-dimensional “toy universe.”

The good news is that most of our knowledge from 1D carries
over to 2D, 3D, and nD without change. Such is the case for
convergence, consistency, stability and order of accuracy.

The bad news is that the analysis necessarily becomes a “little”
messier — we have to Taylor expand in multiple (space)
dimensions, all of which will affect stability, etc...

Peter Blomgren, 〈blomgren.peter@gmail.com〉 2D and 3D; Time Split Schemes — (4/29)



Beyond 1D-space
Finite Difference Schemes...

Time Split Schemes

Mostly Old News... with some Modifications
Instabilitites... a Synthetic Example
Multistep Schemes

The World is not One-Dimensional!

From a practical standpoint things also get harder — the
computational complexity grows — we go from O (n) to O

(
nd

)

spatial grid-points; and each point has more “neighbors” (1D: 2,
2D: 4/8, 3D: 6/26) ⇒ More computations, more storage, more
challenging to visualize in a meaningful way...

1D 2D 3D

Grid-points O (n) O
(
n2
)

O
(
n3
)

Matrix Size O
(
n2
)

O
(
n4
)

O
(
n6
)

GE/LU Time O
(
n3
)

O
(
n6
)

O
(
n9
)

Table: With n points in each unit-direction, we quickly build very large ma-
trices which are work-intensive to invert (for implicit schemes) using naive
Gaussian Elimination / Factorization Metods. Using the fact that most
matrix entries are zeros (sparsity), and approximate inversion methods
(e.g. Conjugate Gradient), problems can still be propagated fairly quickly.
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Increased Grid / “Bookkeeping” Complexity 1 of 2
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Figure: First- and second “level” grid neighbors on 1D and 2D grids;
for 2D we may consider the “mixed” offsets (rightmost panel). In
2D, we have 4 first-level “pure” x-, or y -neighbors; including the
“mixed” offsets we have 8; on the second level the numbers are 8
and 24.
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Increased Grid / “Bookkeeping” Complexity 2 of 2
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Figure: First- and second “level” grid neighbors on a 3D grid.
Left: Only the “pure” x-, y -, and z-directions (6, and 12 neigh-
bors); Middle: Including the first level “mixed” offsets (26); and
Right: including the second level “mixed” offsets (124)
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Moving to Higher Dimensions “Physical” Dimensionality

We start out by discussion stability for systems of equations, both
hyperbolic and parabolic, and then move on to a discussion of
these systems in 2 and 3 space dimensions.

The vector versions of our model problems are of the form

ūt + Aūx = 0, ūt = Būxx

where ū is a d-vector, and the matrices A,B are d × d ; A must be
diagonalizable with real eigenvalues, and the eigenvalues of B must
have positive real part.

There is very little news here — for instance, The Lax-Wendroff
scheme for the vector-one-way-wave-equation and the
Crank-Nicolson schemes for both vector equations, look just as in
the 1D case, but with the scalars a, b replaced the matrices A,B .
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Moving to Higher Dimensions Stability, 1 of 2

There is some news in testing for stability: instead of a scalar
amplification factor g(θ), we get an amplification matrix. We obtain
this matrix by making the substitution v̄nm  G ne imθ.

The stability condition takes the form: ∀T > 0, ∃CT such that for
0 ≤ nk ≤ T , we have

‖G n‖ ≤ CT .

Computing the G to the nth power may not be a lot of fun for a large
matrix G ... For hyperbolic systems this simplifies when G is a
polynomial or rational function of A — this occurs in the Lax-Wendroff
and Crank-Nicolson schemes.

In this case, the matrix which diagonalizes A, also diagonalizes G , and
the stability only depends on the eigenvalues, ai of A, e.g. for
Lax-Wendroff we must have |aiλ| ≤ 1, for i = 1, . . . , d .
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Moving to Higher Dimensions Stability, 2 of 2

For parabolic systems, especially for dissipative schemes with µ
constant, similar simplifying methods exist:

The unitary matrix which transforms B to upper triangular form
(B̃ = U−1BU) can also be used to transform G to upper triangular
form, G̃ . Then if we can find a bound on ‖G̃n‖, a similar bound
applies to ‖Gn‖.

For more general schemes, the situation is more complicated. A
necessary condition for stability is

|gν | ≤ 1 + Kk ,

for all eigenvalues gν of G . However, this condition is not
sufficient in general.
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Example: An Unstable Scheme 1 of 2

We consider the (“somewhat” artificial, but simple) example

[
u1
u2

]

t

=

[
0
0

]
,

and the first order accurate scheme

vn+1
m = vnm − ǫ(wn

m+1 − 2wn
m + wn

m−1)
wn+1
m = wn

m.

The corresponding amplification matrix is

G =

[
1 4ǫ sin2

(
θ
2

)

0 1

]
.
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Example: An Unstable Scheme 2 of 2

The eigenvalues of G are both 1, but

Gn =

[
1 4nǫ sin2

(
θ
2

)

0 1

]

Hence ‖G n(π)‖ = O (n), which shows that the scheme is unstable. �

The good news is that the straight-forward extensions of (stable)
schemes for single equations to systems usually results in stable
schemes.

As for scalar equations, lower order terms resulting in O (k)
modifications of the amplification matrix, do not affect that
stability of the scheme.
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Multistep Schemes as Systems 1 of 2

We can analyze multi-step schemes by converting them into
systems form, e.g. the scheme

v̂n+1(ξ) =
K∑

ν=0

aν(ξ)v̂
n−ν(ξ),

can be written in as a K + 1 system

V̂ n+1 = G (θ)V̂ n,

where V̂ n = [v̂n(ξ), . . . v̂n−K (ξ)]T . The matrix G (θ) is the
companion matrix of the polynomial with coefficients −aν(ξ),
given by...
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Multistep Schemes as Systems 2 of 2

G (θ) =




a0 a1 . . . aK−1 aK
I 0 . . . 0 0
0 I . . . 0 0
...

...
. . .

...
...

0 0 . . . I 0




We note that this form of the companion matrix, seems to be
somewhat non-standard — both PlanetMath.org and
mathworld.wolfram.com give a slightly different (but equivalent)
form.
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Some Comments

For scalar finite difference schemes, the algorithm given in the
context of simple von Neumann polynomials and Schur

polynomials is usually much easier than trying to verify an estimate
like ‖Gn‖ ≤ CT .

For multi-step schemes applied to systems of equations, there
is no working extension of the theory of Schur polynomials, so
writing the scheme in the form of a one-step scheme for an
enlarged system is usually the best route in determining the
stability for such schemes.
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Finite Difference Schemes in Two and Three Dimensions

As stated earlier, our definitions for convergence, consistency, and
stability carry over to multiple dimensions; however, the von
Neumann stability analysis becomes quite challenging... We
consider two examples:

First, we consider the leapfrog scheme for the system

ūt + Aūx + Būy = 0

where A,B are d × d matrices. We write the scheme

vn+1
ℓ,m − vn−1

ℓ,m

2k
+ A

[
vn
ℓ+1,m − vn

ℓ−1,m

2h1

]
+ B

[
vn
ℓ,m+1 − vn

ℓ,m−1

2h2

]
= 0.
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Leapfrogging Along in 2D 1 of 3

In order to perform the stability analysis, we introduce the Fourier
transform solution v̂n(ξ̄) = v̂n(ξ1, ξ2), formally we can let
vnℓ,m  Gne iℓθ1e imθ2 , where θi = hiξi , i = 1, 2. With λ1 = k/h1,
and λ2 = k/h2, we get the recurrence relation

v̂n+1 + 2i (λ1A sin(θ1) + λ2B sin(θ2)) v̂
n − v̂n−1 = 0,

i.e. we are interested in the amplification matrix G , which satisfies

G 2 + 2i (λ1A sin(θ1) + λ2B sin(θ2))G − I = 0.

The scheme can be rewritten as a one-step scheme for a larger
system, and we can derive an expression for G for that system, and
check ‖Gn‖ ≤ CT ... However, it is very difficult to get reasonable
conditions without making some assumptions on A and B ...
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Leapfrogging Along in 2D 2 of 3

The most common assumption, which rarely has any connection to
reality, is that A and B are simultaneously diagonalizable.

That is, we assume there exists a matrix P for which both PAP−1

and PBP−1 are diagonal matrices. We let αν and βν be the
diagonal entries of these matrices, and note that with the linear
transform w̄ = P v̄, we get d uncoupled scalar relations

ŵn+1
ν + 2i (λ1αν sin(θ1) + λ2βν sin(θ2)) ŵ

n
ν − ŵn−1

ν = 0,

where ν = 1, . . . , d . This is somewhat more tractable (we can
reuse our previous knowledge), and we can conclude that the
scheme is stable if and only if

λ1|αν |+ λ2|βν | < 1, ν = 1, . . . , d .
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Leapfrogging Along in 2D 3 of 3

1/β
max

λ
2

1/α
max

λ
1

The most pessimistic stability region is given by

λ1|α|max + λ2|β|max < 1

where |α|max and |β|max are computed from the separate
diagonalizations of A and B .
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The Abarbanel-Gottlieb Scheme 1 of 2

A resource-saving modification to the leapfrog scheme, which
allows for larger time-steps, is given by

vn+1
ℓ,m − vn−1

ℓ,m

2k
+ Aδ0x

[
vn
ℓ,m+1 + vn

ℓ,m−1

2︸ ︷︷ ︸
Average in y

]
+ Bδ0y

[
vn
ℓ+1,m + vn

ℓ−1,m

2︸ ︷︷ ︸
Average in x

]
= 0.

With the simultaneous diagonalizable assumption, the stability
condition is given by

|λ1αν sin(θ1) cos(θ2) + λ2βν sin(θ2) cos(θ1)| < 1.

A sequence of inequalities can make some sense out of this...
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The Abarbanel-Gottlieb Scheme 2 of 2

Since, “obviously,”

|λ1αν sin(θ1) cos(θ2) + λ2βν sin(θ2) cos(θ1)|

≤ max

{

λ1|αν |, λ2|βν |

}

(| sin(θ1)| | cos(θ2)|+ | sin(θ2)| | cos(θ1)|)

≤ max

{

λ1|αν |, λ2|βν |

}

(

(

sin2(θ1) + cos2(θ1)
)1/2 (

sin2(θ2) + cos2(θ2)
)1/2

)

= max

{

λ1|αν |, λ2|βν |

}

.

The two conditions

λ1|αν | < 1, λ2|βν | < 1,

are sufficient for stability (and also necessary).
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More General Stability Conditions

It is possible to derive more general stability conditions, without
simultaneous diagonalization. If the problem is hyperbolic (easiest
argued from the physics), then the matrix function Aξ1 + Bξ2 is
uniformly diagonalizable, i.e. we can find a matrix P(ξ) with
uniformly bounded condition number so that

P(ξ)(Aξ1 + Bξ2)P(ξ)
−1 = D(ξ),

is a diagonal matrix with real eigenvalues. The stability condition
becomes

max
1≤i≤d

max
θ1,θ2

|Di (λ1 sin(θ1), λ2 sin(θ2))| < 1.

Sometimes this can be done with reasonable effort, in other cases
it is a big task...
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Time Split Schemes 1 of 3

Much of the work when it comes to devising practically useful schemes
in higher dimensions, is in the direction of dimension reduction; i.e.
reducing the problem to a sequence of lower-dimensional problems.

Consider

ut +

[
A

∂

∂x

]
u +

[
B

∂

∂y

]
u = 0.

One way to simplify this is to let
[
A ∂

∂x

]
act with twice the strength during

half of the time-step, with
[
B ∂

∂y

]
“turned off”, and then switch, i.e.

ut + 2

[
A

∂

∂x

]
u = 0, t0 ≤ t ≤ t0 + k/2,

ut + 2

[
B

∂

∂y

]
u = 0, t0 + k/2 ≤ t ≤ t0 + k .
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The analysis of time-split schemes becomes quite “interesting,” to
say the least.

• If we use second-order accurate difference schemes, the
overall scheme is second-order accurate only if the order of
the splitting is reversed on alternate time steps.

• Stability for split-time schemes do not necessarily follow
from the stability of each of the steps. Only in the case where
the amplification factors (if being matrices) commute is this
true (see [1], and [2]).

• Prescribing appropriate boundary conditions is a challenge
(see [3]).
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A Quick Note on Strang-Splitting 1 of 3

After Fourier transformation we have

ût = −i(Aωx + Bωy )û

so that

ût(t+k ;ωx , ωy ) = e−i(Aωx+Bωy )k û(t;ωx , ωy ) = e(Ã+B̃)k û(t;ωx , ωy ).

In the time-split case

ût(t + k ;ωx , ωy ) = eÃk eB̃k û(t;ωx , ωy ).

Next, we consider the Taylor expansions of the propagators
e(Ã+B̃)k and eÃk eB̃k (dropping the tildes).
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True Solution

e(A+B)k ∼ I + k(A+ B) +
k2

2
(A+ B)2 +O

(
k3
)

∼ I + k(A+ B) +
k2

2
(A2 + B2 + AB + BA) +O

(
k3
)

Standard Split

eAkeBk ∼

[
I + kA+

k2

2
A2 +O

(
k3
)] [

I + kB +
k2

2
B2 +O

(
k3
)]

∼ I + k(A+ B) +
k2

2
(A2 + B2 + 2AB) +O

(
k3
)

Strang Split

e
Ak/2

e
Bk

e
Ak/2

∼

[

I +
k

2
A +

k2

8
A
2
+ O

(

k
3
)

] [

I + kB +
k2

2
B
2
+ O

(

k
3
)

] [

I +
k

2
A +

k2

8
A
2
+ O

(

k
3
)

]

∼ I + k(A + B) +
k2

2
(A

2
+ B

2
+ AB + BA) + O

(

k
3
)
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A Quick Note on Strang-Splitting 3D 3 of 3

True Solution

e(A+B+C)k ∼ I + k(A+ B + C) +
k2

2
(A+ B + C)2 +O

(

k3
)

∼ I + k(A+ B + C)+

k2

2
(A2 + B2 + C2 + (AB + BA) + (AC + CA) + (BC + CB)) +O

(

k3
)

Strang Split

e
Ak/2

e
Bk/2

e
Ck

e
Bk/2

e
Ak/2

∼

[

I +
k

2
A +

k2

8
A
2
+ O

(

k
3
)

] [

I +
k

2
B +

k2

8
B
2
+ O

(

k
3
)

]

[

I + kC +
k2

2
C
2
+ O

(

k
3
)

] [

I +
k

2
B +

k2

8
B
2
+ O

(

k
3
)

] [

I +
k

2
A +

k2

8
A
2
+ O

(

k
3
)

]

∼ I + k(A + B + C) +
k2

2
(A

2
+ B

2
+ C

2
+ (AB + BA) + (AC + CA) + (BC + CB)) + O

(

k
3
)
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Homework #3 — Due 3/9/2018

Strikwerda-6.3.2 — Theoretical

Strikwerda-6.3.10 — Numerical

Strikwerda-6.3.14 — Theoretical
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