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Recap Previously...

Previously

We started looking at multi-dimensional hyperbolic and parabolic
problems, first via vector-valued problems with one time and one space
dimension, and then to full multi-space dimensional problems.

In terms of definitions, nothing much changed — the concepts of
convergence, consistency, stability and order of accuracy are the same.

However, some of the analysis becomes quite challenging. — For
instance, we end up needing to bound nth powers of amplification
matrices ‖G n‖ ≤ CT .

In order to be able to say anything useful we have to make simplifying
assumptions, e.g simultaneous diagonalizability.

We looked at time-split schemes as a practical way to route around
some (size / complexity) of the computational challenges. (Stability and
Boundary Conditions are a different story...)
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The Alternating Direction Implicit Method

The Alternating Direction Implicit (ADI) method is particularly
useful for solving parabolic equations on rectangular domains,
but can be generalized to other situations.

Given a parabolic equation, ut = ∇ ◦ (B∇u),

ut = [∂x ∂y ]

[
b11 b12
b12 b22

] [
∂x
∂y

]
u = b11uxx + 2b12uxy + b22uyy ,

for which b11, b22 > 0 and b212 < b11 · b22 for parabolicity; and
constant (for now).

Initially, we will consider the case b12 = 0 (no mixed derivative),
on a square domain...
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Crank-Nicolson on a Square

Figure: [Left] The matrix which must be inverted in each Crank-Nicolson iteration. If we trade
storage of the LU-factorization [Center, Right] for speed, then here with 6×6 interior points,
we end up needing more than 4 times the storage. For 100×100 interior points, the requirement
jumps from 49,600 matrix entries, to just over 2,000,000 (a factor of 40). The band-width grows
linearly in n, and the LU-factorization fills in the whole bandwidth. In 3D the story gets even
worse — with n × n × n interior points, the bandwidth is n2...
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If we use the Crank-Nicolson schemes (for 2 spatial dimensions), we
end up having to invert a penta-diagonal matrix in each iteration.
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Crank-Nicolson in a Cube

Figure: [Left] The matrix which must be inverted in each Crank-Nicolson iteration. If we trade
storage of the LU-factorization [Center, Right] for speed, then here with 6 × 6 × 6 interior
points, we end up needing more than 10 times the storage. For 203 (303) interior points, the
requirement jumps from 53,600 (183,600) matrix entries, to just over 6,000,000 (47,000,000)
— a factor of 114 (256). The band-width grows quadratically O(n2), and the LU-factorization
fills in the whole bandwidth. LUMatlab

time = 8.5s (143.6s).
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If we use the Crank-Nicolson schemes (for 3 spatial dimensions), we
end up having to invert a hepta-diagonal matrix in each iteration.
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The ADI Method on a Square 1 of 4

The ADI method reduces an n-dimensional problem to a sequence
of n one-dimensional problems. We here present the idea in 2D...
Let A1 and A2 be two linear operators, e.g.

A1u = b1
∂2

∂x2
u, A2u = b2

∂2

∂y2
u.

For the argument to make sense, we must require that we have
efficient (convenient) ways of solving the equations

wt = Aiw , i = 1, 2,

with A1, and A2 as above and a Crank-Nicolson step, these
solutions are given by inversion of tri-diagonal matrices.

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Systems of PDEs in nD: The ADI Method — (7/22)

The Alternating Direction Implicit Method
ADI Algorithms

Implementing ADI Methods

Introduction
Crank-Nicolson / ADI on a 2D Square

The ADI Method on a Square 2 of 4

The ADI method will give us a way to solve the combined equation

ut = A1u + A2u,

using the available 1D-solvers as building blocks.

Crank-Nicolson applied to the combined equation gives us

un+1 − un

k
=

1

2

[
A1u

n+1 + A1u
n
]
+

1

2

[
A2u

n+1 + A2u
n
]
+O

(
k2

)
.

Which, with some rearrangement can be written

[
I − k

2
A1 −

k

2
A2

]
un+1 =

[
I +

k

2
A1 +

k

2
A2

]
un +O

(
k3

)
.
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The ADI Method on a Square 3 of 4

Now, we notice that

(1± A1)(1± A2) = 1± A1 ± A2 + A1A2.

By adding and subtracting k2A1A2u
[∗] on both sides of the

Crank-Nicolson expression we get

[
I − k

2
A1 −

k

2
A2 +

k2

4
A1A2

]
un+1

=

[
I +

k

2
A1 +

k

2
A2 +

k2

4
A1A2

]
un

+
k2

4
A1A2

[
un+1 − un

]
+O

(
k3

)
.
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The ADI Method on a Square 4 of 4

We can factor this, and use the fact that un+1 = un +O (k) to
embed the last term on the right-hand-side into the O

(
k3

)
-term:

[
I − k

2
A1

] [
I − k

2
A2

]
un+1 =

[
I +

k

2
A1

] [
I +

k

2
A2

]
un +O

(
k3

)
.

Now, if we want to advance the solution numerically, we can
discretize this equation, and here when A1 = b1uxx , A2 = b2uyy ,
the matrices corresponding to I − k/2Ai will be tridiagonal and
can be inverted quickly using the Thomas algorithm.

We get the discretized ADI scheme

[
I − k

2
A1,h

] [
I − k

2
A2,h

]
vn+1 =

[
I +

k

2
A1,h

] [
I +

k

2
A2,h

]
vn.
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ADI Algorithms: Peaceman-Rachford 1 of 2

There are several approaches to solving the ADI scheme, one
commonly used approach is the Peaceman-Rachford algorithm,
which also explain the origin of the name alternating direction
implicit method:

[
I − k

2
A1,h

]
vn+1/2 =

[
I +

k

2
A2,h

]
vn,

[
I − k

2
A2,h

]
vn+1 =

[
I +

k

2
A1,h

]
vn+1/2.

In the first half-step, the x-direction is implicit, and the y -direction
explicit, and in the second half-step the roles are reversed.

Is this scheme equivalent to the ADI scheme we derived?!? — It
looks quite different!
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ADI Algorithms: Peaceman-Rachford 2 of 2

We have,
[
I − k

2
A1,h

]
vn+1/2 =

[
I +

k

2
A2,h

]
vn,

[
I − k

2
A2,h

]
vn+1 =

[
I +

k

2
A1,h

]
vn+1/2.

Hence,

[
I − k

2
A1,h

] [
I − k

2
A2,h

]
vn+1 =

[
I − k

2
A1,h

] [
I +

k

2
A1,h

]
vn+1/2

=

[
I +

k

2
A1,h

] [
I − k

2
A1,h

]
vn+1/2 =

[
I +

k

2
A1,h

] [
I +

k

2
A2,h

]
vn.

Note that we do not need A1,hA2,h = A2,hA1,h for this to hold.
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ADI Algorithms: D’Yakonov

The D’Yakonov scheme is a direct splitting of the ADI scheme we
originally derived:

[
I − k

2
A1,h

]
vn+1/2 =

[
I +

k

2
A1,h

] [
I +

k

2
A2,h

]
vn

[
I − k

2
A2,h

]
vn+1 = vn+1/2,

Other ADI-type schemes can be derived starting with other basic
schemes (we worked from Crank-Nicolson), e.g. the
Douglas-Rachford method (Strikwerda pp. 175–176) is derived
based on backward-time central-space.
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Boundary Conditions for ADI Schemes

Here, we consider Dirichlet boundary conditions u = β(t, x , y) specified
at the boundary, in the context of the Peaceman-Rachford scheme

[
I − k

2
A1,h

]
vn+1/2 =

[
I +

k

2
A2,h

]
vn,

[
I − k

2
A2,h

]
vn+1 =

[
I +

k

2
A1,h

]
vn+1/2.

The correct boundary conditions for the half-step quantity is given by

vn+1/2 =
1

2

[
I +

k

2
A2,h

]
βn +

1

2

[
I − k

2
A2,h

]
βn+1.

Where did that come from?!? — Flip the second equation in the scheme,
add the two, and solve for vn+1/2... And it makes sense, “half” the
condition comes from the past, and “half” from the future.
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Implementing ADI Methods 1 of 6

We consider Peaceman-Rachford on a grid, where
(xℓ, ym) = (ℓ∆x ,m∆y), ℓ = 0, . . . , L, m = 0, . . . ,M. We let
µx = k/∆x2, µy = k/∆y2. Further, we let vℓ,m denote the full-step
quantity, and wℓ,m denote the half-step quantity; if we are not interested
in saving the results for all t = kn, we can overwrite these quantities...

We get, the first half-stage

−
[
b1µx

2

]
wℓ−1,m +

[
1 + b1µx

]
wℓ,m −

[
b1µx

2

]
wℓ+1,m

=

[
b2µy

2

]
vℓ,m−1 +

[
1− b2µy

]
vℓ,m +

[
b2µy

2

]
vℓ,m+1,

for ℓ = 1, . . . , L− 1, and m = 1, . . . ,M − 1.
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Implementing ADI Methods 2 of 6

Figure: “Active” points in the first half-step, the interior points are active both for the old
v -layer and the w -layer which is being computed. Also, the boundary values at the top vℓ,M and
bottom vℓ,0 boundaries are active, and so are w0,m (left) and wL,m (right).
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Implementing ADI Methods 3 of 6

If we enumerate our grid-points in the following
(Lexiographical) way

then we get (M − 1) tridiagonal systems (one for each “row”),
with (L− 1) unknowns.
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Implementing ADI Methods 4 of 6

We also need the missing boundary conditions for w

w0,m =

[
b2µy

4

]
βn
0,m−1 +

[
1− b2µy

2

]
βn
0,m +

[
b2µy

4

]
βn
0,m+1

−
[
b2µy

4

]
βn+1
0,m−1 +

[
1 + b2µy

2

]
βn+1
0,m −

[
b2µy

4

]
βn+1
0,m+1.

wL,m =

[
b2µy

4

]
βn
L,m−1 +

[
1− b2µy

2

]
βn
L,m +

[
b2µy

4

]
βn
L,m+1

−
[
b2µy

4

]
βn+1
L,m−1 +

[
1 + b2µy

2

]
βn+1
L,m −

[
b2µy

4

]
βn+1
L,m+1.

For m = 1, . . . ,M − 1 (m = 0, and m = M are not needed).
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Implementing ADI Methods 5 of 6

The second half-stage is given by

−
[
b2µy

2

]
vℓ,m−1 +

[
1 + b2µy

]
vℓ,m −

[
b2µy

2

]
vℓ,m+1

=

[
b1µx

2

]
wℓ−1,m +

[
1− b1µx

]
wℓ,m +

[
b1µx

2

]
− wℓ+1,m,

for ℓ = 1, . . . , L− 1, and m = 1, . . . ,M − 1.

With the correct grid-ordering, we get (L− 1) tridiagonal systems
of size (M − 1).

Boundary conditions for v are given at time-level (n + 1).
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Implementing ADI Methods 6 of 6

Figure: “Active” points in the second half-step [left], and the appropriate enumeration order of
the grid-points [right].
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The Mitchell-Fairweather Scheme

In Strikwerda (pp. 180–181), there is a discussion of the
Mitchell-Fairweather scheme, which is an ADI scheme which is second
order in time, and fourth order accurate in space:

[
1− 1

2

(
b1µx −

1

6

)
h2δ2x

]
vn+1/2 =

[
1 +

1

2

(
b2µy +

1

6

)
h2δ2y

]
vn,

[
1− 1

2

(
b2µy −

1

6

)
h2δ2y

]
vn+1 =

[
1 +

1

2

(
b1µx +

1

6

)
h2δ2x

]
vn+1/2,

with Dirichlet boundary conditions for vn+1/2

vn+1/2 =
1

2b1µx

{(
b1µx +

1

6

)[
1 +

1

2

(
b2µy +

1

6

)
h2δ2y

]
βn

+

(
b1µx −

1

6

)[
1− 1

2

(
b2µy −

1

6

)
h2δ2y

]
βn+1

}
.
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ADI with Mixed (uxy ) Derivative Terms

It has been shown that no ADI scheme involving only the time levels
n + 1 and n can be second-order accurate when b12 6= 0 (i.e. when we
have mixed derivatives).

A second-order accurate modification of the Peaceman-Rachford scheme
is given by

[
1− k

2
b11δ

2
x

]
vn+1/2 =

[
1 +

k

2
b22δ

2
y

]
vn + kb12δ0xδ0y

[
3

2
vn − 1

2
vn−1

]
,

[
1− k

2
b22δ

2
y

]
vn+1 =

[
1 +

k

2
b11δ

2
x

]
vn+1/2 + kb12δ0xδ0y

[
3

2
vn − 1

2
vn−1

]
,

with Dirichlet boundary conditions for vn+1/2

vn+1/2 =
1

2

(
1 +

k

2
b22δ

2
y

)
βn +

1

2

(
1− k

2
b22δ

2
y

)
βn+1.
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