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Recap Previously...

Previously

We started looking at multi-dimensional hyperbolic and parabolic
problems, first via vector-valued problems with one time and one space
dimension, and then to full multi-space dimensional problems.

In terms of definitions, nothing much changed — the concepts of
convergence, consistency, stability and order of accuracy are the same.

However, some of the analysis becomes quite challenging. — For
instance, we end up needing to bound nth powers of amplification
matrices ||G"|| < Cr.

In order to be able to say anything useful we have to make simplifying
assumptions, e.g simultaneous diagonalizability.

We looked at time-split schemes as a practical way to route around
some (size / complexity) of the computational challenges. (Stability and
Boundary Conditions are a different story...)
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The Alternating Direction Implicit Method

The Alternating Direction Implicit (ADI) method is particularly
useful for solving parabolic equations on rectangular domains,
but can be generalized to other situations.

Given a parabolic equation, us = V o (BVu),

bi1 b2 } [ Ox

ug = [8)( 8)/] |: b12 b22 ay

:| u= blluxx + 2b12uxy + b22uyy7

for which by1, bpo > 0 and b%Q < by - byy for parabolicity; and
constant (for now).

Initially, we will consider the case bj = 0 (no mixed derivative),
on a square domain...
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Crank-Nicolson in a Cube

Figure: [LEFT] The matrix which must be inverted in each Crank-Nicolson iteration. If we trade
storage of the LU-factorization [CENTER, RIGHT] for speed, then here with 6 X 6 interior points,
we end up needing more than 4 times the storage. For 100 x 100 interior points, the requirement
jumps from 49,600 matrix entries, to just over 2,000,000 (a factor of 40). The band-width grows
linearly in n, and the LU-factorization fills in the whole bandwidth. In 3D the story gets even
worse — with n X n x n interior points, the bandwidth is n?...
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If we use the Crank-Nicolson schemes (for 2 spatial dimensions), we
end up having to invert a penta-diagonal matrix in each iteration.

INIVERSITY

Figure: [LEFT] The matrix which must be inverted in each Crank-Nicolson iteration. If we trade
storage of the LU-factorization [CENTER, RIGHT| for speed, then here with 6 x 6 X 6 interior
points, we end up needing more than 10 times the storage. For 203 (303) interior points, the
requirement jumps from 53,600 (183,600) matrix entries, to just over 6,000,000 (47,000,000)
— a factor of 114 (256). The band-width grows quadratically O(n?), and the LU-factorization
fills in the whole bandwidth. LUMat2b — 8 55 (143.6s).
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If we use the Crank-Nicolson schemes (for 3 spatial dimensions), we
end up having to invert a hepta-diagonal matrix in each iteration. ...
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The ADI method reduces an n-dimensional problem to a sequence The ADI method will give us a way to solve the combined equation
of n one-dimensional problems. We here present the idea in 2D...
Let A; and A, be two linear operators, e.g. ur = Aru + Aqu,
o o using the available 1D-solvers as building blocks.
Aiu=bi—su, Ayu=b—u. . . . . .
1 Lox2™ 2 28)/2 Crank-Nicolson applied to the combined equation gives us
For the argument to make sense, we must require that we have umt — g1 nil o1 nil n 5
.. . . . :—[Alu +A1U]+—[A2U +A2U]-|—O(k).
efficient (convenient) ways of solving the equations k 2 2
) Which, with some rearrangement can be written
wy = Aiw, 1 =1,2,
. . k k n+1 k k n 3
with A1, and A as above and a Crank-Nicolson step, these | — §A1 — EAQ u =|l+ §A1 + 5/42 u"+ O (k ) .
solutions are given by inversion of tri-diagonal matrices.
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Now, we notice that
(1 + Al)(l + Az) =1+ A £ A +AA.

By adding and subtracting k2A; A>ul*l on both sides of the
Crank-Nicolson expression we get

[ k k k?

_ _ n n+1
/ 2A1 2A2+4A1A2}U

k k k2
= |l+ =A —A —AA n
[+21+22+4 12}U

k2 {
+ — A Ay |t — “n} +0 (k).
4 1 2 ( ) swnsmn

We can factor this, and use the fact that u"*! = u" + O (k) to
embed the last term on the right-hand-side into the O (k3)—term:

k k k k
I — ZAL| [ — A | u" T = |14+ ZAL| |1+ ZAz| u” k3.
o) g =gl e gaf v o)
Now, if we want to advance the solution numerically, we can
discretize this equation, and here when A; = biuy, A> = byuy,,
the matrices corresponding to | — k/2 A; will be tridiagonal and
can be inverted quickly using the Thomas algorithm.

We get the discretized ADI scheme

k k k k
| — —Al h | — —A2 h Vn—’_1 = ||+ —Al h |+ —A2 h v, a
2 7 2 7 2 7 2 7
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There are several approaches to solving the ADI scheme, one We have,
commonly used approach is the Peaceman-Rachford algorithm, K K
which also explain the origin of the name alternating direction [l - §A1,h} VRV [l + EAz,h} v,
implicit method:
k k
+1 n+1/2
k k |:l — —Ag’h v = I + —A17h v .
I — ZAip| viTY2 = 1+ ZAxu| v, 2 2
2 7 2 °
Hence,
k n+1 k n+1/2
| — §A2’h 4 = /+ §A17h 4 . B P K P
1 ] |1 g = [ S [ v
In the first half-step, the x-direction is implicit, and the y-direction
ici i _ k k k k
explicit, and in the second half-step the roles are reversed. _ {I i §A1,h | _ §A1,h V2 g §A1,h [ + §A2,h v

Is this scheme equivalent to the ADI scheme we derived?!? — It
looks quite different!
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Note that we do not need A yA> , = Ao Ay, for this to hold. "
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Boundary Conditions for ADI Schemes

The D'Yakonov scheme is a direct splitting of the ADI scheme we
originally derived:

k k k
{’ - zA“’} S {’ * EA”’} [’ i EAM} a

{/ — EAz h] v = yntl/2
2 ’

Other ADI-type schemes can be derived starting with other basic
schemes (we worked from Crank-Nicolson), e.g. the
Douglas-Rachford method (Strikwerda pp. 175-176) is derived

Here, we consider Dirichlet boundary conditions u = 5(t, x, y) specified
at the boundary, in the context of the Peaceman-Rachford scheme

k k
[/ - 2A1,h] v = {/ + 2A2,h] v

k k
|:/ . 2A2,h:| Vn-l-l _ |:/ + 2A1,h:| Vn+1/2.

The correct boundary conditions for the half-step quantity is given by

1 k 1 k
v = 5 [/ + 2A2,h} A"+ 3 {/ — 2A2,h] fChans

Where did that come from?!? — Flip the second equation in the scheme,

) add the two, and solve for v"t1/2 . And it makes sense, “half” the
based on backward-time central-space. . . yem
S Do s condition comes from the past, and “half” from the future. sxyDico st
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We consider Peaceman-Rachford on a grid, where

(xe,ym) = (LAx,mAy), £=0,...,.L, m=0,...,M. We let

px = k/Ax?, p, = k/Ay?. Further, we let vy, denote the full-step
quantity, and wy , denote the half-step quantity; if we are not interested
in saving the results for all t = kn, we can overwrite these quantities...

We get, the first half-stage

b b iy
- |: 12# :|W€1,m + |:1 + bl,U/x:| Wem — |: 12M :|W£+1,m
b
- |: 22My:| Ve, m—1 + |:]- - b2,Ufy:| Ve,m + |:bzéuy:| Ve, m+1,

fore=1,...,L—1,and m=1,..., M — 1.
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Figure: “Active” points in the first half-step, the interior points are active both for the old
v-layer and the w-layer which is being computed. Also, the boundary values at the top v,y and
bottom v, ¢ boundaries are active, and so are wy,, (left) and wy n, (right).
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If we enumerate our grid-points in the following We also need the missing boundary conditions for w
(LEXIOGRAPHICAL) way
bop 1-b b
. y 2 [y 2Ly
- Wo,m = 68 m—1 + ﬁ(’;m + 68 m+1
4 ) 2 ) 4 )
b2/~‘y nt+1 14 bopiy | pn1 | b2py ot
0,m— 1 2 0,m 4 0,m+1-
bopu bzu by
— Y n Yy Yy n
Wi,m = |: 4 /BL,m—l + 5L mT 4 6L,m+1
bzﬂy n+1 1+ bopy n+1 ba iy ﬂn—&-l
L,m— 1 2 L.m 4 L.m+1°
then we get (M — 1) tridiagonal systems (one for each "row"), y y y ded
with (L — 1) unknowns. W)m Form=1,...,M—1(m=0, and m= M are not needed). W)“m
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The second half-stage is given by

b b
- |: 2;y:| Ve,m—1 + [1 + bZUy} Vem — |:2Tluy] Ve m+1
b1 pix by ix
= |: 12,U/ :|W£—1,m + |:]- - blMX:| Wem + [ 12lu :| - Wetr1,m,
fore=1,....L—1,and m=1,... M—1.

With the correct grid-ordering, we get (L — 1) tridiagonal systems
of size (M —1).

Boundary conditions for v are given at time-level (n+ 1).
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Figure: “Active” points in the second half-step [left], and the appropriate enumeration order of
the grid-points [right].
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ADI with Mixed (uyy,) Derivative Terms

In Strikwerda (pp. 180-181), there is a discussion of the
Mitchell-Fairweather scheme, which is an ADI scheme which is second
order in time, and fourth order accurate in space:

1 1 . 1 1 .
[1 -3 <b1ux — 6> h%ﬁ} y/2 = [1 +5 <b2uy + 6> h%ﬂ v,

1 I\ 20| 1 1 L\ ool nt1/2
[1—2<b2,uy—6>h5y]vJr :[1—|—2<b1,ux—|—6>héx yt/2)

with Dirichlet boundary conditions for v+1/2

N 1 1 1 1 n

1 1 1
(b= 2) 1= 2 (o 2) ] ).
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It has been shown that no ADI scheme involving only the time levels

n+ 1 and n can be second-order accurate when bya # 0 (i.e. when we
have mixed derivatives).

A second-order accurate modification of the Peaceman-Rachford scheme
is given by

k k 3 1
|:1 — 2b11($)2<:| ynt1/2 — |:]_ + 2b225}2,:| v+ kb]_z(sox(S()y |:2 v’ — Vn1:| R

2
k k 3 1,
|:1 - 2b225)2,:| Vn-"_1 = |:1 + 2b11(5)2<:| Vn—H/2 + kb12(50X60y |:2 v — §Vn 1:| y

with Dirichlet boundary conditions for v"1/2

1 k 1 k
v/2 = 5 <1 + 2b225§> B" + 3 <1 - 2b225§> fChany
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