Numerical Solutions to PDEs

Lecture Notes \＃13
－Systems of PDEs in Higher Dimensions－ The Alternating Direction Implicit Method

Peter Blomgren，

〈blomgren．peter＠gmail．com〉Department of Mathematics and Statistics Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego，CA 92182－7720
http：／／terminus．sdsu．edu／
Spring 2018

Peter Blomgren，〈blomgren．peter＠gmail．com〉 Systems of PDEs in nD：The ADI Method

Recap Previously．．

Previously

We started looking at multi－dimensional hyperbolic and parabolic problems，first via vector－valued problems with one time and one space dimension，and then to full multi－space dimensional problems．

In terms of definitions，nothing much changed－the concepts of convergence，consistency，stability and order of accuracy are the same．

However，some of the analysis becomes quite challenging．－For instance，we end up needing to bound nth powers of amplification matrices $\left\|G^{n}\right\| \leq C_{T}$ ．
In order to be able to say anything useful we have to make simplifying assumptions，e．g simultaneous diagonalizability．

We looked at time－split schemes as a practical way to route around some（size／complexity）of the computational challenges．（Stability and Boundary Conditions are a different story．．．）
（1）Recap
－Previously．．．
（2）The Alternating Direction Implicit Method
－Introduction
－Crank－Nicolson／ADI on a 2D Square
（3）
ADI Algorithms
－Peaceman－Rachford
－D＇Yakonov
－Boundary Conditions for ADI Schemes
（4）Implementing ADI Methods
－Peaceman－Rachford
－The Mitchell－Fairweather Scheme
－Mixed（ $u_{x y}$ ）Derivative Terms

Peter Blomgren，〈blomgren．peter＠gmail．com〉 Systems of PDEs in nD：The ADI Method

troduction

Crank－Nicolson／ADI on a 2D Square
The Alternating Direction Implicit Method

The Alternating Direction Implicit（ADI）method is particularly useful for solving parabolic equations on rectangular domains， but can be generalized to other situations．

Given a parabolic equation，$u_{t}=\nabla \circ(B \nabla u)$ ，

$$
u_{t}=\left[\partial_{x} \partial_{y}\right]\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{12} & b_{22}
\end{array}\right]\left[\begin{array}{l}
\partial_{x} \\
\partial_{y}
\end{array}\right] u=b_{11} u_{x x}+2 b_{12} u_{x y}+b_{22} u_{y y}
$$

for which $b_{11}, b_{22}>0$ and $b_{12}^{2}<b_{11} \cdot b_{22}$ for parabolicity；and constant（for now）．
Initially，we will consider the case $b_{12}=0$（no mixed derivative）， on a square domain．．．

Crank－Nicolson on a Square

Figure：［LEFT］The matrix which must be inverted in each Crank－Nicolson iteration．If we trade storage of the LU－factorization［CENTER，RIGHT］for speed，then here with 6×6 interior points， we end up needing more than 4 times the storage．For 100×100 interior points，the requirement jumps from 49，600 matrix entries，to just over 2，000，000（a factor of 40）．The band－width grows linearly in n ，and the LU－factorization fills in the whole bandwidth．In 3D the story gets even worse－with $n \times n \times n$ interior points，the bandwidth is $n^{2} \ldots$

If we use the Crank－Nicolson schemes（for 2 spatial dimensions），we end up having to invert a penta－diagonal matrix in each iteration．

Peter Blomgren，〈blomgren．peter＠gmail．com〉 Systems of PDEs in nD：The ADI Method
$-(5 / 22)$
The Alternating Direction Implicit Method

$$
\begin{aligned}
& \text { Introduction } \\
& \text { Crank-Nicolson / ADI on a 2D Square }
\end{aligned}
$$

The ADI Method on a Square
1 of 4

The ADI method reduces an n－dimensional problem to a sequence of n one－dimensional problems．We here present the idea in 2D．．． Let A_{1} and A_{2} be two linear operators，e．g．

$$
A_{1} u=b_{1} \frac{\partial^{2}}{\partial x^{2}} u, \quad A_{2} u=b_{2} \frac{\partial^{2}}{\partial y^{2}} u .
$$

For the argument to make sense，we must require that we have efficient（convenient）ways of solving the equations

$$
w_{t}=A_{i} w, \quad i=1,2,
$$

with A_{1} ，and A_{2} as above and a Crank－Nicolson step，these solutions are given by inversion of tri－diagonal matrices．

Figure：［LEFT］The matrix which must be inverted in each Crank－Nicolson iteration．If we trade storage of the LU－factorization［CENTER，RIGHT］for speed，then here with $6 \times 6 \times 6$ interior points，we end up needing more than 10 times the storage．For $20^{3}\left(30^{3}\right)$ interior points，the requirement jumps from $53,600(183,600)$ matrix entries，to just over $6,000,000(47,000,000)$ －a factor of 114 （256）．The band－width grows quadratically $\mathcal{O}\left(n^{2}\right)$ ，and the LU－factorization fills in the whole bandwidth．$L U_{\text {time }}^{\text {Matlab }}=8.5 \mathrm{~s}(143.6 \mathrm{~s})$ ．

If we use the Crank－Nicolson schemes（for 3 spatial dimensions），we end up having to invert a hepta－diagonal matrix in each iteration．

Peter Blomgren，〈blomgren．peter＠gmail．com〉 Systems of PDEs in nD：The ADI Method

The Alternating Direction Implicit Method
 ADI Algorithms

troduction

Crank－Nicolson／ADI on a 2D Square
The ADI Method on a Square

The ADI method will give us a way to solve the combined equation

$$
u_{t}=A_{1} u+A_{2} u,
$$

using the available 1D－solvers as building blocks．
Crank－Nicolson applied to the combined equation gives us
$\frac{u^{n+1}-u^{n}}{k}=\frac{1}{2}\left[A_{1} u^{n+1}+A_{1} u^{n}\right]+\frac{1}{2}\left[A_{2} u^{n+1}+A_{2} u^{n}\right]+\mathcal{O}\left(k^{2}\right)$.
Which，with some rearrangement can be written

$$
\left[I-\frac{k}{2} A_{1}-\frac{k}{2} A_{2}\right] u^{n+1}=\left[I+\frac{k}{2} A_{1}+\frac{k}{2} A_{2}\right] u^{n}+\mathcal{O}\left(k^{3}\right) .
$$

Now，we notice that

$$
\left(1 \pm A_{1}\right)\left(1 \pm A_{2}\right)=1 \pm A_{1} \pm A_{2}+A_{1} A_{2} .
$$

By adding and subtracting $k^{2} A_{1} A_{2} u^{[*]}$ on both sides of the Crank－Nicolson expression we get

$$
\begin{align*}
& {\left[I-\frac{k}{2} A_{1}-\frac{k}{2} A_{2}+\frac{k^{2}}{4} A_{1} A_{2}\right] u^{n+1}} \\
& =\left[I+\frac{k}{2} A_{1}+\frac{k}{2} A_{2}+\frac{k^{2}}{4} A_{1} A_{2}\right] u^{n} \\
& +\frac{k^{2}}{4} A_{1} A_{2}\left[u^{n+1}-u^{n}\right]+\mathcal{O}\left(k^{3}\right) . \tag{2}
\end{align*}
$$

Peter Blomgren，〈blomgren．peter＠gmail．com〉 Systems of PDEs in nD：The ADI Method
－（9／22）

> | The Alternating Direction Implicit Method | Peaceman-Rachford |
| ---: | :--- |
| ADI Algorithms | | $\begin{aligned} & \text { D'Yakonov } \\ & \text { Implementing ADI Methods } \\ & \text { Boundary Conditions for ADI Schemes }\end{aligned}$

ADI Algorithms：Peaceman－Rachford

1 of 2

There are several approaches to solving the ADI scheme，one commonly used approach is the Peaceman－Rachford algorithm， which also explain the origin of the name alternating direction implicit method：

$$
\begin{aligned}
{\left[I-\frac{k}{2} A_{1, h}\right] v^{n+1 / 2} } & =\left[I+\frac{k}{2} A_{2, h}\right] v^{n}, \\
{\left[I-\frac{k}{2} A_{2, h}\right] v^{n+1} } & =\left[I+\frac{k}{2} A_{1, h}\right] v^{n+1 / 2} .
\end{aligned}
$$

In the first half－step，the x－direction is implicit，and the y－direction explicit，and in the second half－step the roles are reversed．

Is this scheme equivalent to the ADI scheme we derived？！？－It looks quite different！

We can factor this，and use the fact that $u^{n+1}=u^{n}+\mathcal{O}(k)$ to embed the last term on the right－hand－side into the $\mathcal{O}\left(k^{3}\right)$－term：

$$
\left[I-\frac{k}{2} A_{1}\right]\left[I-\frac{k}{2} A_{2}\right] u^{n+1}=\left[I+\frac{k}{2} A_{1}\right]\left[I+\frac{k}{2} A_{2}\right] u^{n}+\mathcal{O}\left(k^{3}\right) .
$$

Now，if we want to advance the solution numerically，we can discretize this equation，and here when $A_{1}=b_{1} u_{x x}, A_{2}=b_{2} u_{y y}$ ， the matrices corresponding to $I-k / 2 A_{i}$ will be tridiagonal and can be inverted quickly using the Thomas algorithm．

We get the discretized ADI scheme

$$
\left[I-\frac{k}{2} A_{1, h}\right]\left[I-\frac{k}{2} A_{2, h}\right] v^{n+1}=\left[I+\frac{k}{2} A_{1, h}\right]\left[I+\frac{k}{2} A_{2, h}\right] v^{n} .
$$

Peter Blomgren，〈blomgren．peter＠gmail．com〉 Systems of PEs in nD：The ADI Method

$$
\begin{aligned}
\hline \text { The Alternating Direction Implicit Method } \\
\text { ADI Algorithms }
\end{aligned} \quad \begin{aligned}
& \text { Peaceman-Rachford } \\
& \text { D'Yakonov } \\
& \text { Implementing ADI Methods }
\end{aligned}
$$

ADI Algorithms：Peaceman－Rachford
We have，

$$
\begin{aligned}
{\left[I-\frac{k}{2} A_{1, h}\right] v^{n+1 / 2} } & =\left[I+\frac{k}{2} A_{2, h}\right] v^{n}, \\
{\left[I-\frac{k}{2} A_{2, h}\right] v^{n+1} } & =\left[I+\frac{k}{2} A_{1, h}\right] v^{n+1 / 2} .
\end{aligned}
$$

Hence，

$$
\begin{aligned}
& {\left[I-\frac{k}{2} A_{1, h}\right]\left[I-\frac{k}{2} A_{2, h}\right] v^{n+1}=\left[I-\frac{k}{2} A_{1, h}\right]\left[I+\frac{k}{2} A_{1, h}\right] v^{n+1 / 2} } \\
= & {\left[I+\frac{k}{2} A_{1, h}\right]\left[I-\frac{k}{2} A_{1, h}\right] v^{n+1 / 2}=\left[I+\frac{k}{2} A_{1, h}\right]\left[I+\frac{k}{2} A_{2, h}\right] v^{n} . }
\end{aligned}
$$

Note that we do not need $A_{1, h} A_{2, h}=A_{2, h} A_{1, h}$ for this to hold．

Peaceman－Rachford

Boundary Conditions for ADI Schemes
Here，we consider Dirichlet boundary conditions $u=\beta(t, x, y)$ specified at the boundary，in the context of the Peaceman－Rachford scheme

$$
\begin{aligned}
{\left[I-\frac{k}{2} A_{1, h}\right] v^{n+1 / 2} } & =\left[I+\frac{k}{2} A_{2, h}\right] v^{n}, \\
{\left[I-\frac{k}{2} A_{2, h}\right] v^{n+1} } & =\left[I+\frac{k}{2} A_{1, h}\right] v^{n+1 / 2} .
\end{aligned}
$$

The correct boundary conditions for the half－step quantity is given by

$$
v^{n+1 / 2}=\frac{1}{2}\left[I+\frac{k}{2} A_{2, h}\right] \beta^{n}+\frac{1}{2}\left[I-\frac{k}{2} A_{2, h}\right] \beta^{n+1}
$$

Where did that come from？！？－Flip the second equation in the scheme， add the two，and solve for $v^{n+1 / 2} \ldots$ ．And it makes sense，＂half＂the condition comes from the past，and＂half＂from the future．

Peter Blomgren，〈blomgren．peter＠gmail．com〉 Systems of PDEs in nD：The ADI Method

$$
\begin{aligned}
\hline \text { The Alternating Direction Implicit Method } & \text { Peaceman-Rachford } \\
\text { ADI Algorithms } & \text { The Mitchell -Fairweather Scheme } \\
\text { Implementing ADI Methods } & \text { Mixed }\left(u_{x y}\right) \text { Derivative Terms }
\end{aligned}
$$

We consider Peaceman－Rachford on a grid，where
$\left(x_{\ell}, y_{m}\right)=(\ell \Delta x, m \Delta y), \ell=0, \ldots, L, m=0, \ldots, M$ ．We let $\mu_{x}=k / \Delta x^{2}, \mu_{y}=k / \Delta y^{2}$ ．Further，we let $v_{\ell, m}$ denote the full－step quantity，and $w_{\ell, m}$ denote the half－step quantity；if we are not interested in saving the results for all $t=k n$ ，we can overwrite these quantities．．．
We get，the first half－stage

$$
\begin{aligned}
& -\left[\frac{b_{1} \mu_{x}}{2}\right] w_{\ell-1, m}+\left[1+b_{1} \mu_{x}\right] w_{\ell, m}-\left[\frac{b_{1} \mu_{x}}{2}\right] w_{\ell+1, m} \\
& \quad=\left[\frac{b_{2} \mu_{y}}{2}\right] v_{\ell, m-1}+\left[1-b_{2} \mu_{y}\right] v_{\ell, m}+\left[\frac{b_{2} \mu_{y}}{2}\right] v_{\ell, m+1}
\end{aligned}
$$

for $\ell=1, \ldots, L-1$ ，and $m=1, \ldots, M-1$ ．

Peaceman－Rachford
 The Mitchell－Fairweather Scheme
 Mixed（ $u_{x y}$ ）Derivative Terms

Implementing ADI Methods
2 of 6

Figure：＂Active＂points in the first half－step，the interior points are active both for the old v－layer and the w－layer which is being computed．Also，the boundary values at the top $v_{\ell, M}$ and bottom $v_{\ell, 0}$ boundaries are active，and so are $w_{0, m}$（left）and $w_{L, m}$（right）．

If we enumerate our grid－points in the following
（Lexiographical）way

then we get（ $M-1$ ）tridiagonal systems（one for each＂row＂）， with（ $L-1$ ）unknowns．

Peter Blomgren，〈blomgren．peter＠gmail．com〉 Systems of PDEs in nD：The ADI Method
$-(17 / 22)$

The Alternating Direction Implicit Method	ADI Algorithms		
Aeaceman－Rachford			
Implementing ADI Methods			The Mitchell－Fairweather Scheme
:---			
Mixed $\left(u_{x y}\right)$ Derivative Terms			

The second half－stage is given by

$$
\begin{aligned}
& -\left[\frac{b_{2} \mu_{y}}{2}\right] v_{\ell, m-1}+\left[1+b_{2} \mu_{y}\right] v_{\ell, m}-\left[\frac{b_{2} \mu_{y}}{2}\right] v_{\ell, m+1} \\
& \quad=\left[\frac{b_{1} \mu_{x}}{2}\right] w_{\ell-1, m}+\left[1-b_{1} \mu_{x}\right] w_{\ell, m}+\left[\frac{b_{1} \mu_{x}}{2}\right]-w_{\ell+1, m}
\end{aligned}
$$

for $\ell=1, \ldots, L-1$ ，and $m=1, \ldots, M-1$ ．
With the correct grid－ordering，we get $(L-1)$ tridiagonal systems of size（ $M-1$ ）．

Boundary conditions for v are given at time－level $(n+1)$ ．

ADI with Mixed ($u_{x y}$) Derivative Terms

It has been shown that no ADI scheme involving only the time levels $n+1$ and n can be second-order accurate when $b_{12} \neq 0$ (i.e. when we have mixed derivatives).
A second-order accurate modification of the Peaceman-Rachford scheme is given by

$$
\begin{gathered}
{\left[1-\frac{k}{2} b_{11} \delta_{x}^{2}\right] v^{n+1 / 2}=\left[1+\frac{k}{2} b_{22} \delta_{y}^{2}\right] v^{n}+k b_{12} \delta_{0 x} \delta_{0 y}\left[\frac{3}{2} v^{n}-\frac{1}{2} v^{n-1}\right]} \\
{\left[1-\frac{k}{2} b_{22} \delta_{y}^{2}\right] v^{n+1}=\left[1+\frac{k}{2} b_{11} \delta_{x}^{2}\right] v^{n+1 / 2}+k b_{12} \delta_{0 x} \delta_{0 y}\left[\frac{3}{2} v^{n}-\frac{1}{2} v^{n-1}\right]}
\end{gathered}
$$

with Dirichlet boundary conditions for $v^{n+1 / 2}$

$$
v^{n+1 / 2}=\frac{1}{2}\left(1+\frac{k}{2} b_{22} \delta_{y}^{2}\right) \beta^{n}+\frac{1}{2}\left(1-\frac{k}{2} b_{22} \delta_{y}^{2}\right) \beta^{n+1}
$$

