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Recap Previously...

Previously

We started looking at multi-dimensional hyperbolic and parabolic
problems, first via vector-valued problems with one time and one space
dimension, and then to full multi-space dimensional problems.

In terms of definitions, nothing much changed — the concepts of
convergence, consistency, stability and order of accuracy are the same.

However, some of the analysis becomes quite challenging. — For
instance, we end up needing to bound nth powers of amplification
matrices |G"|| < Cr.

In order to be able to say anything useful we have to make simplifying
assumptions, e.g simultaneous diagonalizability.

We looked at time-split schemes as a practical way to route around
some (size / complexity) of the computational challenges. (Stability and
Boundary Conditions are a different story...)
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Introduction
Crank-Nicolson / ADI on a 2D Square

The Alternating Direction Implicit Method

The Alternating Direction Implicit (ADI) method is particularly
useful for solving parabolic equations on rectangular domains,
but can be generalized to other situations.

Given a parabolic equation, u; = V o (BVu),
bi1 bio Ox
ue = [0x 0y [ bio boo ] [ 9, u = biiux + 2b1ouyy + baouy,y,

for which b;1, bpp > 0 and bfz < b1 - byy for parabolicity; and
constant (for now).

Initially, we will consider the case b2 = 0 (no mixed derivative),
on a square domain... ,
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Crank-Nicolson on a Square

Figure: [LEFT| The matrix which must be inverted in each Crank-Nicolson iteration. If we trade
storage of the LU-factorization [CENTER, RIGHT] for speed, then here with 6 X 6 interior points,
we end up needing more than 4 times the storage. For 100 x 100 interior points, the requirement
jumps from 49,600 matrix entries, to just over 2,000,000 (a factor of 40). The band-width grows
linearly in n, and the LU-factorization fills in the whole bandwidth. In 3D the story gets even
worse — with n X n X n interior points, the bandwidth is n?...
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If we use the Crank-Nicolson schemes (for 2 spatial dimensions), we
end up having to invert a penta-diagonal matrix in each iteration. ...
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Crank-Nicolson in a Cube

Figure: [LEFT| The matrix which must be inverted in each Crank-Nicolson iteration. If we trade
storage of the LU-factorization [CENTER, RIGHT] for speed, then here with 6 x 6 x 6 interior
points, we end up needing more than 10 times the storage. For 203 (30%) interior points, the
requirement jumps from 53,600 (183,600) matrix entries, to just over 6,000,000 (47,000,000)
— a factor of 114 (256). The band-width grows quadratically O(n?), and the LU-factorization
fills in the whole bandwidth. LUMat2b = 8 55 (143.6s).
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If we use the Crank-Nicolson schemes (for 3 spatial dimensions), we
end up having to invert a hepta-diagonal matrix in each iteration. oo
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Introduction
Crank-Nicolson / ADI on a 2D Square

The ADI method reduces an n-dimensional problem to a sequence
of n one-dimensional problems. We here present the idea in 2D...
Let A; and A, be two linear operators, e.g.

2 82

Asu = bh—=u.

0
A1U = b1 ay2

0x>2 u,
For the argument to make sense, we must require that we have
efficient (convenient) ways of solving the equations

we = Ajw, 1 =1,2,

with A1, and A as above and a Crank-Nicolson step, these
solutions are given by inversion of tri-diagonal matrices.
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Introduction
Crank-Nicolson / ADI on a 2D Square

The ADI method will give us a way to solve the combined equation

ur = Aru+ Asu,

using the available 1D-solvers as building blocks.
Crank-Nicolson applied to the combined equation gives us

n+1 n

u —u

k

[Aru™t + Au”] +—%[Agu”+1+—A2uﬂ~+(9(k2).

N -

Which, with some rearrangement can be written

k k k k
I — A — A | ™ = |1+ Z A+ A 0"+ O (K).
2 2 2 2 Z
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Introduction
Crank-Nicolson / ADI on a 2D Square

Now, we notice that

(1 + Al)(l + A2) =1+ A1+ A+ AjAs.

By adding and subtracting k?A; A;ul*] on both sides of the
Crank-Nicolson expression we get

k k k2
—ZA — A 2 AA n+1
|:I 5 1 5 2+1 12:|U

k k k2
= |14+ =A1+=-Ar+ —A1A | u"”
[+21—|—22+4 12]“

k2
+ —AA [u”+1 — u”] +0 (k).
4 ( ) xANDsmn
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Introduction
Crank-Nicolson / ADI on a 2D Square

We can factor this, and use the fact that u™ = u" + O (k) to
embed the last term on the right-hand-side into the O (k*)-term:

k k k k
A A n+l _ o n n 3
[/ 2A1] [/ 2A2] u [/+ 2A1] [/+ 2A2} u"+ O (k).

Now, if we want to advance the solution numerically, we can
discretize this equation, and here when A; = byuy, Ax = bouy,,
the matrices corresponding to | — k/2 A; will be tridiagonal and
can be inverted quickly using the Thomas algorithm.

We get the discretized ADI scheme
k k k k
I — ZAipl |1 =ZAspl vt = |14+ ZAip| |1+ =Ax 5] v
2 ’ 2 ) 2 ’ 2 )
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There are several approaches to solving the ADI scheme, one
commonly used approach is the Peaceman-Rachford algorithm,
which also explain the origin of the name alternating direction
implicit method:

| — ﬁAl h V’H_]'/2 = | + 5/\2 h Vn7
2 7 2 ”
|:I _ 12<A2,h:| vn+1 —_ |:/ + /;Al,h:| VI7+1/2'

In the first half-step, the x-direction is implicit, and the y-direction
explicit, and in the second half-step the roles are reversed.

Is this scheme equivalent to the ADI scheme we derived?!? — It
looks quite different!

UNIVERSITY
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We have,
k k
[ — ZAip| vitY2 = |14+ ZAxn| v,
2 2 °
k n+1 n+1/2
| — §A27h 1% = | + *ALh v .
Hence,
k k k k
[ —ZA | —ZA Ml |- ZA [+ =A nt1/2
[ 5 l,h] [ 5 2,h] v [ 5 l,h] [ + > 1,4 v
k k k k
=l+=A [ —ZA 2 — 14 ZA [+ =A n
[+21,h}[ 21,h]V +21,h +22,hV

Note that we do not need Ay yA> , = Az Ay for this to hold. "o
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ADI Algorithms: D'Yakonov

The D'Yakonov scheme is a direct splitting of the ADI scheme we
originally derived:

k k k
[’ B zAlv”] = [’ - zAL”] [’ * zAM] g

[I - EAz h] vl = yntl/2
2 5 )

Other ADI-type schemes can be derived starting with other basic
schemes (we worked from Crank-Nicolson), e.g. the

Douglas-Rachford method (Strikwerda pp.175-176) is derived N
based on backward-time central-space.
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Boundary Conditions for ADI Schemes

Here, we consider Dirichlet boundary conditions u = 3(t, x, y) specified
at the boundary, in the context of the Peaceman-Rachford scheme

k k
" n+1/2 _ n n
|:/ 2A17h:| 1% |:/ + 2A27h:| v,

k
|:I _ 2A2,h:| Vn+l

The correct boundary conditions for the half-step quantity is given by

k
|:/ 4 2A1,h:| Vn+1/2.

1[, & 1k
StL2 > [I n 2A2,h:| 8"+ 3 [/ — 2A2,h] gl

Where did that come from?!? — Flip the second equation in the scheme,
add the two, and solve for v™1/2_ And it makes sense, “half” the
condition comes from the past, and "half” from the future. San DiEGo AT
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We consider Peaceman-Rachford on a grid, where

(xe, ym) = ((Ax,mAy), £=0,...,L, m=0,..., M. We let

tx = k/DX?, py = k/Ay?. Further, we let vy, denote the full-step
quantity, and wp, ,, denote the half-step quantity; if we are not interested
in saving the results for all t = kn, we can overwrite these quantities...

We get, the first half-stage

b1 iy by pix
- LA We—1,m + |1+ bl/fo Wem — e Wet1,m
2 2
b b
= { Q;Y} Vem—1+ [1 - b2My:| Ve,m + [22My] Ve,m+1,

fori=1,...,L—1,and m=1,... M—1.
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Figure: “Active” points in the first half-step, the interior points are active both for the old
v-layer and the w-layer which is being computed. Also, the boundary values at the top v, p and
bottom vy o boundaries are active, and so are wo,, (left) and wy p, (right).
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If we enumerate our grid-points in the following
(LEXIOGRAPHICAL) way

P

then we get (M — 1) tridiagonal systems (one for each “row"), _
with (L — 1) unknowns.

UNIVERSITY
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We also need the missing boundary conditions for w

by 1-b . b .
Wo,m = |: Hy:| BOm 1 |:22'uy:| ﬁo,m + |: 24My:| ﬁ07m+1

[bwy} n+l [1+b2ﬂy] Nl [bﬂiy} gl
4

0,m—1 2 o,m 0,m+1-

Wi,m = |:b2ﬂy:| Bl m-1+ |:1b2//[/y:| Bl m [%:| Bl mi1

4
bZ/‘y n+1 L+ bopiy | g1 | b2iy gl
L,m— 1 L.m L,m+41-
2 4
Form=1,...,M—1(m=0, and m = M are not needed).
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The second half-stage is given by

b by
- |: 22My:| Vem—1 + |:1 + bZ,U/y:| Vem — |:éuy:| Ve m+1

_ |: blﬂx by Hx

} We—1,m + [1 - bl,ux:| We,m + [ > ] — Weg1,ms

2

for{=1,....,L—1,and m=1,... M—1.

With the correct grid-ordering, we get (L — 1) tridiagonal systems
of size (M —1).

Boundary conditions for v are given at time-level (n + 1).
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Figure: “Active” points in the second half-step [left], and the appropriate enumeration order of

the grid-
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points [right].
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The Mitchell-Fairweather Scheme

In Strikwerda (pp. 180-181), there is a discussion of the
Mitchell-Fairweather scheme, which is an ADI scheme which is second
order in time, and fourth order accurate in space:

1 252|  nt1/2 1 22| n
{1—2<bmx—6)h5] +1/ —[1+ (bZ,uy 6>h6y v,
[ : (bzuy - ) h252} ™= {1 +% <b1ux + é) h25§] yHi2,

with Dirichlet boundary conditions for v"+1/2

n 1 1 1 1 ’

= g (e ) (14 (b v g ) w0
1 1 I\ 20| antt 5

+ (bl,ux — 6> |:]- - 5 <b2ﬂy - 6> h §y:| ﬂ ’ } wmmn
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ADI with Mixed (uy,) Derivative Terms

It has been shown that no ADI scheme involving only the time levels
n+ 1 and n can be second-order accurate when byy # 0 (i.e. when we
have mixed derivatives).

A second-order accurate modification of the Peaceman-Rachford scheme
is given by

k k 3 1

|:1 — 2b11(5)2<:| V’H_l/2 = |:1 + 2b225}2,:| v + kblzéoxéoy [2 v’ — Vn_1:| 5
k k 3 1

|:]. - 2b225}2,:| vl = |:]_ + 2b11(5)2<:| V’H—l/2 + kb12(50X(50y |:2 v’ — V"_1:| R

with Dirichlet boundary conditions for v"+1/2

1 k L X
Y2 5 (1 + 2b22§§> B" + 5 (1 — 2b225;2/> gL,
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