
Numerical Solutions to PDEs
Lecture Notes #14

— Second Order Equations —
Introduction; Finite Differences

Peter Blomgren,
〈blomgren.peter@gmail.com〉
Department of Mathematics and Statistics

Dynamical Systems Group
Computational Sciences Research Center

San Diego State University
San Diego, CA 92182-7720

http://terminus.sdsu.edu/

Spring 2018

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Second Order Equations; Finite Differences — (1/23)

Outline

1 Recap
The ADI Method

2 Second-Order (Time) Equations
Examples: Wave-Equation
What’s in a name?! — “Hyperbolic” vs. “Parabolic”
The Euler-Bernoulli Beam Equation

3 Finite Differences
Stability for Second-Order Equations
Example: CTCS for the Wave Equation
Example: Order-(2,2) for the Euler-Bernoulli Equation

4 von Neumann Polynomials and Stability

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Second Order Equations; Finite Differences — (2/23)

Recap The ADI Method

Last Time: The ADI Method

The Alternating Direction Implicit (ADI) method allows us to solve
(primarily) parabolic equations in multiple space dimension, by
“slicing” higher-dimensional problems into one-dimensional
sub-problems.

The “slicing” pushes the boundary of what size problem is
computationally feasible.

A fully discretized ADI scheme based on a Crank-Nicolson iteration
for ut = A1u + A2u = uxx + uyy is given by

[
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2
A1,h

] [
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2
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]
vn+1 =
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There are several approaches to solving this, including the
Peaceman-Rachford, and D’Yakonov schemes.
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Second-Order (Time) Equations

We now turn our attention to PDEs with second order time
derivatives, e.g.

utt − a2uxx = 0 The wave equation

utt + b2uxxxx = 0 The Euler-Bernoulli (beam) equation

utt − c2uttxx + b2uxxxx = 0 The Rayleigh (beam) equation

Most of our previously developed methods and theory can be
applied to these equations, with minor modifications.

—
Most prominently, the definition of stability must take the second
order (time) derivative in time into account.
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The Second-Order Wave Equation 1 of 2

In one space-dimension, the second order wave equation is given by

utt − a2uxx = 0,

where a is a non-negative real value (the speed of propagation).

The initial value problem for this equation requires two initial conditions,
typically given as

u(0, x) = u0(x), ut(0, x) = u1(x).

With exact solutions given by

u(t, x) =
u0(x − at) + u0(x + at)

2
+

1

2a

∫ x+at

x−at

u1(s) ds.
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The Second-Order Wave Equation 2 of 2

The exact solution shows that we have two characteristic speeds ±a
associated with the second-order wave-equation.

In the Fourier domain, the solution is given by

û(t, ω) = û0(ω) cos(aωt) + û1(ω)
sin(aωt)

aω

= û+(ω)e
iaωt + û−(ω)e

−iaωt .

All these expressions show that the general solution consists of two waves
— one moving to the right, and one moving to the left.

Another way of seeing this is to formally “split” the differential operator:

[
∂2

∂t2
− a2

∂2

∂x2

]
u =

[
∂

∂t
− a

∂

∂x

] [
∂

∂t
+ a

∂

∂x

]
u = 0.
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Example #1: The Second-Order Wave-Equation

We fix a = 1, and use the following initial data

u0(x) =

{
cos(πx/2) |x | ≤ 1,
0 |x | > 1,

u1(x) = 0

The exact solution is given by

u(t, x) =
1

2

[
cos

(
π(x − t)

2

)
+ cos

(
π(x + t)

2

)]
.
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Figure: Snapshots at T = 0, T = 0.5, and T = 1.0. See also the movie
wave01.mpg
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Example #2: The Second-Order Wave-Equation

We fix a = 1, and use the following initial data

u0(x) = 0, u1(x) =

{
1 |x | ≤ 1,
0 |x | > 1,

The exact solution is given by

u(t, x) =
1

2

∫ x+t

x−t

u1(s) ds =
1

2
length

{
[x − t, x + t] ∩ [−1, 1]

}
.

−6 −4 −2 0 2 4 6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T = 0.00

−6 −4 −2 0 2 4 6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T = 0.50

−6 −4 −2 0 2 4 6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T = 1.00

Figure: Snapshots at T = 0, T = 0.5, and T = 1.0. See also the movie
wave02.mpg
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Example #3: The Second-Order Wave-Equation

We fix a = 1, and use the following initial data

u0(x) =

{
− cos(πx/2) |x | ≤ 1,
0 |x | > 1,

, u1(x) =

{
1 |x | ≤ 1,
0 |x | > 1,

The exact solution is given by

u(t, x) =
−1

2

[
− cos

(
π(x − t)

2

)
+ cos

(
π(x + t)

2

)]
+

1

2
length

{
[x − t, x + t] ∩ [−1, 1]

}
.
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Figure: Snapshots at T = 0, T = 0.5, and T = 1.0. See also the movie
wave03.mpg
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“Hyperbolic” vs. “Parabolic” 1 of 2

The names “hyperbolic” and “parabolic” are historical, and
originate from the fact that the symbols of the second-order
equations are similar to the equations for hyperbolas and parabolas.

Laplace transforming in time, and Fourier transforming in the
spatial coordinates, and setting η = iξ gives:

For utt − a2uxx = 0, the symbol is given by s2 − a2η2,
For ut − buxx = 0, the symbol is given by s − bη2.

The solutions to

s2 − a2η2 = Ch, s − bη2 = Cp,

describe hyperbolas and parabolas, respectively.
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“Hyperbolic” vs. “Parabolic” 2 of 2
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Figure: [Left] The hyperbolas s2 − aη2 = Ch in the (η, s)-plane; and [Right] the
parabolas s − bη2 = Cp in the (η, s)-plane.

The names are just based on this formal similarity, but are now fixtures in
the language of PDEs. The key to hyperbolic systems is that the solution
propagates with finite speed(s), and the key to parabolic systems is that
the solution becomes smoother than its initial data.
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The Euler-Bernoulli Equation 1 of 2

The Euler-Bernoulli equation

utt = −b2uxxxx ,

describes the vertical motion of a thin horizontal beam with small
displacements from rest.

Using the Fourier transform, it is straight-forward to write down the
exact solution

u(t, x) =
1√
2π

∫ ∞

−∞
e iωx

[
û0(ω) cos(bω

2t) + û1(ω)
sin(bω2t)

bω2

]
dω

=
1√
2π

∫ ∞

−∞
e iω(x+bωt)û+(ω) + e iω(x−bωt)û−(ω) dω

The second formulas shows that the propagation speed is ±bω, hence
the equation is dispersive.
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The Euler-Bernoulli Equation 2 of 2

u(t, x) =
1√
2π

∫ ∞

−∞
e iωx

[
û0(ω) cos(bω

2t) + û1(ω)
sin(bω2t)

bω2

]
dω

=
1√
2π

∫ ∞

−∞
e iω(x+bωt)û+(ω) + e iω(x−bωt)û−(ω) dω

The Euler-Bernoulli equation does not have finite speed of
propagation, bω is unbounded; hence it is not hyperbolic.
[dispersive]

Further, there is no increased smoothness in the solution as time
evolves, hence it is not parabolic. [non-dissipative]
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Finite Differences for Second-Order Equations 1 of 2

Our definitions for convergence, consistency, and order of accuracy
remain the same, however we must modify or definition of stability:

Definition (Stability for Second Order Problems)

A finite difference scheme Pk,hv
n
m = 0 for an equation that is

second-order in t is stable in a stability region Λ if there is an integer J
and for any positive time T there is a constant CT such that

h
∞∑

m=−∞
|vn

m|2 ≤ (1+ n2)CTh
J∑

j=0

∞∑

m=−∞
|v j

m|2

for all solutions vn
m and for 0 ≤ nk ≤ T with (k , h) ∈ Λ.

The factor (1+ n2) is new, and shows that we allow a linear growth in t.
J is almost always 1, since data must be given at two time-levels.
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Finite Differences for Second-Order Equations 2 of 2

In the von Neumann analysis we must require that the (at least) two
amplification factors satisfy

|gν | ≤ 1 + Kk

If there are no lower order terms, then the stability condition is |gν | ≤ 1
with double roots on the unit circle allowed.

Theorem (Stability for Second Order Problems)

If the amplification polynomial Φ(g , θ) for a second-order time-dependent
equation is explicitly independent of h and k, then the necessary and
sufficient condition for the finite difference scheme to be stable is that all
roots, gν(θ), satisfy the following conditions:

(a) |gν(θ)| ≤ 1, and

(b) if |gν(θ)| = 1, then |gν(θ)| must be at most a double root.
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Example: Central-Time Central-Space 1 of 2

The “standard” second order accurate scheme for utt = a2uxx is:

vn+1
m − 2vn

m + vn−1
m

k2
= a2

vn
m+1 − 2vn

m + vn
m−1

h2

As usual, we set vn
m  gne imθ and factor out common terms, to get

g − 2− g−1 = −4a2λ2 sin2
(
θ
2

)

(g1/2 − g−1/2)2 = (±2iaλ sin
(
θ
2

)
)2

g1/2 − g−1/2 = ±2iaλ sin
(
θ
2

)

g ± 2iaλ sin
(
θ
2

)
g1/2 − 1 = 0

g
1/2
± = ±iaλ sin

(
θ
2

)
±
√

1− a2λ2 sin2
(
θ
2

)

g± =

(√
1− a2λ2 sin2

(
θ
2

)
± iaλ sin

(
θ
2

))2
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Example: Central-Time Central-Space 2 of 2

We have

g± =

(√
1− a2λ2 sin2

(
θ

2

)
± iaλ sin

(
θ

2

))2

,

and it is clear that as long as aλ ≤ 1, we have |g±| ≤ 1. At θ = 0
g+ = g−. The equality also occurs when aλ = 1, and θ = π.

Since we can allow two equal roots on the unit circle, we have
shown that the scheme is stable if and only if aλ ≤ 1.

Note: Usually we take aλ < 1 to avoid the linear growth of the wave
with φ = π, where g± = (±i)2 = −1, even though this growth
(formally) does not affect the stability of the scheme.
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Example: The Euler-Bernoulli Equation

The simplest second-order accurate scheme is given by

vn+1
m − 2vn

m + vn−1
m

k2
= −b2

vn
m+2 − 4vn

m+1 + 6vn
m − 4vn

m−1 + vn
m−2

h4

The amplification factors are given by the roots of

g − 2 + g−1 = −16b2µ2 sin4
(
θ

2

)
, µ =

k

h2

It is stable if and only if

2bµ sin2
(
θ

2

)
≤ 1 ⇔ bµ ≤ 1

2
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Getting Started: Computing v1m utt = auxx

All schemes for second order (time) equations require some initialization
of v1

m. With
u(0, x) = u0(x), ut(0, x) = u1(x),

given, the simplest procedure is based on the Taylor expansion:

u(k , x) ∼ u0(x) + ku1(x) +
1

2
k2utt(0, x) +O

(
k3
)
.

Using utt = a2uxx , we get a second order accurate initialization from

v1
m − [u0]m

k
= [u1]m +

a2kδ2x
2

v0
m.

Note: The initialization should be of the same order of accuracy as the
scheme in order not to degrade the overall method.
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von Neumann Polynomials and Stability 1 of 4

We can modify our previously defined algorithms for von Neumann and
Schur polynomials, to test for the stability of second-order schemes.

First we extend

Old Definition: von Neumann Polynomial

The polynomial ϕ is a von Neumann polynomial if all its roots, rν , satisfy |rν | ≤ 1.

Definition (von Neumann and Schur Polynomials)

The polynomial ϕ is a von Neumann polynomial of order q if all its roots, rν , satisfy
the following conditions:

(a) |rν | ≤ 1, and

(b) the roots with |rν | = 1 have multiplicity at most q.

A von Neumann polynomial of order 0 is defined to be a Schur polynomial.
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Old Theorem (von Neumann Polynomial Test)

ϕd is a von Neumann polynomial of degree d , if and only if either

(a) |ϕd (0)| < |ϕ∗
d(0)| and ϕd−1 is a von Neumann polynomial of

degree d − 1, or

(b) ϕd−1 is identically zero and ϕ′
d is a von Neumann polynomial.

Theorem (von Neumann Polynomial Test)

A polynomial ϕd of exact degree d is a von Neumann polynomial of order
q, if and only if either

(a) |ϕd (0)| < |ϕ∗
d(0)| and ϕd−1 is a von Neumann polynomial of

degree d − 1 and order q, or

(b) ϕd−1 is identically zero and ϕ′
d is a von Neumann polynomial of

order q − 1.
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With this more general definition, we have that a simple von Neumann
polynomial is a von Neumann of degree 1.

Also, these generalizations explain some of the parts of the algorithm:

Algorithm

Start with ϕd (z) of exact degree d , and set NeumannOrder = 0.

while (d > 0) do

1. Construct ϕ∗
d (z)

2. Define cd = |ϕ∗
d (0)|2 − |ϕd (0)|2. (*)

3. Construct the polynomial ψ(z) = 1
z
(ϕ∗

d (0)ϕd (z)− ϕd (0)ϕ
∗
d (z)).

4.1. If ψ(z) ≡ 0, then increase NeumannOrder by 1, and set ϕd−1(z) := ϕ′
d (z).

4.2. Otherwise, if the coefficient of degree d − 1 in ψ(z) is 0, then the polynomial is
not a von Neumann polynomial of any order, terminate algorithm.

4.3. Otherwise, set ϕd−1(z) := ψ(z).

end-while (decrease d by 1)

(*) Enforce appropriate conditions on cd .
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The new theorem (and the algorithm) can be used to analyze
stability for second order equations.

If Φ(g , θ) is the amplification polynomial of finite difference
scheme for a second order equation for which the restricted
condition |gν(θ)| ≤ 1 can be used, then the scheme is stable if and
only if Φ(g , θ) is a von Neumann polynomial of order 2.

Next time: Boundary conditions; two and three spatial dimensions.
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