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Recap Second Order Equations

Previously: Second Order Equations, 1 of 2

We started looking at problems with more than one time-derivative,
e.g. the wave equation, and the Euler-Bernoulli beam equation.

Many of our previous definitions and theorems go through without
change: consistency, convergence, and order of accuracy; however,
the definition and machinery for checking stability had to be
modified a little.
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Recap Second Order Equations

Previously: Second Order Equations, 2 of 2

The stability definition was modified to allow for linear growth in
the ℓ2-norm over time (to match the growth of the PDE), and in
the von Neumann analysis we allowed for double roots of the
amplification polynomial on the unit circle.

Further, we augmented our definitions of Schur and von Neumann
polynomials (with the von-Neumann-Order), so that a finite
difference scheme for a second order (time) problem is stable if and
only if its amplification polynomial is a von Neumann polynomial
of second order.
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Boundary Conditions for Second-Order Equations 1 of 2

Since the solutions to the second order wave equation

utt − a2uxx = 0

consist of two parts moving at characteristic speeds ±a, it is clear
that in a finite domain, e.g. 0 ≤ x ≤ 1, we must specify one
boundary condition at each boundary.

Figure: We must specify two initial conditions e.g. u(0, x) = u0(x), ut(0, x) =
u1(x), and two boundary conditions e.g. u(t, 0) = f0(t), and u(t, 1) = f1(t).
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Boundary Conditions for Second-Order Equations 2 of 2

The specified boundary conditions can be of Dirichlet type (u
specified), or Neumann type (ux specified), or a combination
thereof:

α0u(0, t) + β0ux(0, t) = f̃0(x), min{|α0|, |β0|} > 0

α1u(1, t) + β1ux(1, t) = f̃1(x), min{|α1|, |β1|} > 0

When βi = 0, the numerical implementation of the boundary
condition is trivial

αiv
n
I = f̃ nI , I =

{
0 when i = 0
M when i = 1
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Neumann (or Mixed-Type) Boundary Conditions 1 of 2

When βi 6= 0, then several possibilities present themselves. For a
pure Neumann boundary condition at x = 0

ux(t, 0) = 0, no-flux

We can use

vn+1
0 =

4vn+1
1 − vn+1

2

3
or

vn+1
0 = 2vn0 − vn−1

0 − 2a2λ2(vn0 − vn1 )
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Neumann (or Mixed-Type) Boundary Conditions 2 of 2

The first formula originates from the second-order accurate
one-sided approximation

ux(0) =
4u(h)− 3u(0)− u(2h)

2h
+O

(
h2
)
,

and the second from applying the scheme

vn+1
m − 2vnm + vn−1

m

k2
= a2

vnm+1 − 2vnm + vnm−1

h2
,

at m = 0, and eliminating the ghost point vn−1 using the central
second-order difference

vn1 − vn−1

2h
= 0.

First-order one-sided differences should be avoided, since they will
degrade the overall accuracy of the scheme.
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BC’s for Higher Order Accurate Schemes 1 of 2

The scheme

vn+1
m − 2vnm + vn−1

m

k2
= a2

(
1− h2

12
δ2
)
δ2vnm

is accurate of order (2,4) for the wave equation utt = a2uxx .
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BC’s for Higher Order Accurate Schemes 2 of 2

If the value on the boundary is specified, then the value next to the
boundary can be determined by interpolation, e.g.

vn+1
1 =

1

4

(
vn+1
0 + 6vn+1

2 − 4vn+1
3 + vn+1

4

)

which comes from (the numerical BC — ∂4

∂x u = 0):

h4δ4+v
n+1
0 = 0.

Applying this scheme with Neumann/mixed boundary conditions
becomes quite challenging; — we can use (1) two layers of “ghost
points,” vn−1, and vn−2, which must be eliminated; or (2)
non-symmetric finite differencing in the x-direction. In both
settings we (α) have to match the order of the scheme, and (β)
analyze the stability [lecture notes #19].
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BC’s for the Euler-Bernoulli Equation 1 of 3

Next, we consider the Euler-Bernoulli equation

utt = −b2uxxxx

and the second order accurate scheme

vn+1
m − 2vnm + vn−1

m

k2
= −b2

vnm+2 − 4vnm+1 + 6vnm − 4vnm−1 + vnm−2

h4

Here, we are going to need 2 boundary conditions at each
end-point:

Figure: Illustration of physical boundary conditions, in the left figure the beam is
clamped in at x = 0, and we have u(t, 0) = ux (t, 0) = 0; in the right figure the beam
is fixed in place at x = 0 but is allowed to pivot, and we have u(t, 0) = uxx (t, 0) = 0.
In both cases the right end of the beam is free to move, and the boundary conditions
are uxx (t, L) = uxxx (t, L) = 0.
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BC’s for the Euler-Bernoulli Equation 2 of 3

Boundary Type u u′ u′′ u′′′

Free End u′′ = 0 u′′′ = 0
Clamp at End fixed fixed
Simply Supported End fixed u′′ = 0
Point Force at End u′′ = 0 specified
Point Torque at End specified u′′′ = 0

∆u ∆u′ ∆u′′ ∆u′′′

Interior Clamp ∆u = 0 ∆u′ = 0
Interior Simple Support ∆u = 0 ∆u′ = 0 ∆u′′ = 0
Interior Point Force ∆u = 0 ∆u′ = 0 ∆u′′ = 0 ∆u′′′ specified
Interior Point Torque ∆u = 0 ∆u′ = 0 ∆u′′ specified ∆u′′′ = 0

Note: Here ∆u′′ ≡ u′′(xright)− u′′(xleft).

http://en.wikipedia.org/wiki/Euler-Bernoulli beam equation
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BC’s for the Euler-Bernoulli Equation 3 of 3

The finite difference implementations of these boundary conditions
are quite straight-forward, but require some thought...

Second order accurate approximations for ux , uxx and uxxx can be
used at the boundary points

vn1 − vn−1

2h
,

vn1 − 2vn0 + vn−1

h2
,

vn2 − 2vn1 + 2vn−1 − vn−2

2h3
,

vn
M+1 − vn

M−1

2h
,

vn
M+1 − 2vn

M + vn
M−1

h2
,

vn
M+2 − 2vn

M+1 + 2vn
M−1 − vn

M−2

2h3
,

after which we must eliminate the values at the “ghost points”
vn−1, v

n
−2, v

n
M+1, and vnM+2. It’s “just” a “book-keeping” problem!
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Second-Order Equations in 2D and 3D 1 of 6

In terms of definitions and theory, nothing much changes as we
move our finite difference schemes into 2D and 3D.

The wave equation in 2D / 3D is given by

utt = a2 (uxx + uyy ) , utt = a2 (uxx + uyy + uzz) ,

and the most straight-forward second order schemes are given by

δ2t v
n
ℓ,m = a2

(
δ2xv

n
ℓ,m + δ2yv

n
ℓ,m

)

δ2t v
n
k,ℓ,m = a2

(
δ2xv

n
k,ℓ,m + δ2yv

n
k,ℓ,m + δ2zv

n
k,ℓ,m

)
,

When ∆x = ∆y = ∆z = h the stability conditions for 2D and 3D
are

aλ ≤ 1√
2
, aλ ≤ 1√

3
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Second-Order Equations in 2D and 3D 2 of 6

These restrictions can be improved to aλ ≤ 1, by modifying the
schemes, here in 2D:

δ2t v
n
ℓ,m =

1

4
a2
[
δ2x(v

n
ℓ,m+1 + 2vnℓ,m + vnℓ,m−1)

+ δ2y (v
n
ℓ+1,m + 2vnℓ,m + vnℓ−1,m)

]

Further, ADI schemes can be developed, e.g.
[
1− 1

4
k2a2δ2x

]
ṽ
n+1/2
ℓ,m =

[
1 +

1

4
k2a2δ2y

]
vnℓ,m

[
1− 1

4
k2a2δ2y

]
ṽn+1
ℓ,m =

[
1 +

1

4
k2a2δ2y

]
ṽ
n+1/2
ℓ,m

vn+1
ℓ,m = 2ṽn+1

ℓ,m − vn−1
ℓ,m
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Second-Order Equations in 2D and 3D 3 of 6

If we look at the amplification factors corresponding to the finite
difference scheme for the wave equations, we have

g± =

[[
1 − a2λ2

(
sin2

(
θ

2

)
+ sin2

(
φ

2

))]
± iaλ

(
sin2

(
θ

2

)
+ sin2

(
φ

2

))1/2
]2

Comparing this with

e ia (ξ
2
1+ξ22)

1/2 k

we can identify the phase velocity, α(ξ1, ξ2), from the expression

sin

[
1

2
α(ξ1, ξ2)k (ξ

2
1 + ξ22)

1/2

]
= aλ

(
sin2

(
hξ1
2

)
+ sin2

(
hξ2
2

))1/2

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Boundary Conditions; 2D and 3D — (20/26)



Boundary Conditions
2D and 3D

Example: An Order (2,4) Scheme

Second-Order Equations in 2D and 3D 4 of 6

With a little bit of help from Taylor, we identify

α(ξ1, ξ2) = a

[
1− h2|ξ|2

24

(
cos4 β + sin4 β − a2λ2

)
+O

(
h4|ξ|4

)]

where
|ξ| = (ξ21 + ξ22)

1/2, β = tan−1(ξ1/ξ2)

This shows that the phase error depends on the direction of
propagation n̄ = (cosβ, sinβ).

In most computations this distortion is not visible, unless the grid
is very coarse (h large).
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2nd Order Eqns. in 2D and 3D Numerical Dispersion 5 of 6
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Figure: Left: The numerical dispersion factor (cos4 β + sin4 β −
a2λ2) for angles in [−π, π] for aλ = 1

4 . The RMS-deviation is 0.71.
Right: aλ = 1

2 , with RMS-deviation at 0.53.
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2nd Order Eqns. in 2D and 3D Numerical Dispersion 6 of 6
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Figure: Left: The numerical dispersion factor (cos4 β + sin4 β −
a2λ2) for angles in [−π, π] for aλ =

√
3
2 . The RMS-deviation is

0.18. Right: The RMS Dispersion Error vs. aλ has a minimum
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3
2 .
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Example 1 of 3

We use the (2,4)-order scheme

δ2t v
n
ℓ,m =

1

4
a2
[
δ2x(v

n
ℓ,m+1 + 2vnℓ,m + vnℓ,m−1)

+ δ2y (v
n
ℓ+1,m + 2vnℓ,m + vnℓ−1,m)

]

to solve
utt = a2(uxx + uyy ), x , y ∈ [−1, 1]

with

a = 1, u(0, x) = J0

(
3
√
(x − 1/2)2 + (y − 1/2)2

)
, ut(0, x) = 0

and
∆x = ∆y = h = 0.1, λ = 0.9
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Example 2 of 3

J0(r) is the Bessel function of the first kind

0 5 10 15 20
−0.5

0

0.5

1
Bessel Function of the First Kind

We use the exact solution

u(t, x , y) = cos(3t) J0

(
3
√
(x − 1/2)2 + (y − 1/2)2

)

to prescribe boundary conditions.
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Example 3 of 3
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Figure: Snapshots of the solution and error at T = 0.27, T = 0.36, and T = 0.45.
See also the movies wave2d soln.mpg, and wave2d err.mpg

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Boundary Conditions; 2D and 3D — (26/26)


