

SAN DIEGO STA UNIVERSITY

- (3/26)

We started looking at problems with more than one time-derivative, *e.g.* the wave equation, and the Euler-Bernoulli beam equation.

Many of our previous definitions and theorems go through without change: consistency, convergence, and order of accuracy; however, the **definition and machinery for checking stability** had to be modified a little. The stability definition was modified to allow for **linear growth** in the ℓ_2 -norm over time (to match the growth of the PDE), and in the **von Neumann** analysis we allowed for double roots of the amplification polynomial on the unit circle.

Further, we augmented our definitions of Schur and von Neumann polynomials (with the von-Neumann-Order), so that a finite difference scheme for a second order (time) problem is stable if and only if its amplification polynomial is a von Neumann polynomial of second order.

Boundary Conditions 2D and 3D Higher Order Accurate Schemes	Boundary ConditionsFundamentals2D and 3DHigher Order Accurate Schemes			
Boundary Conditions for Second-Order Equations 1 of 2	Boundary Conditions for Second-Order Equations 2 of 2			
Since the solutions to the second order wave equation $u_{tt} - a^2 u_{xx} = 0$ consist of two parts moving at characteristic speeds $\pm a$, it is clear that in a finite domain, e.g. $0 \le x \le 1$, we must specify one boundary condition at each boundary. Figure: We must specify two initial conditions e.g. $u(0, x) = u_0(x)$, $u_t(0, x) = u_0(x)$, $u_t(x)$, $u_t(x$	The specified boundary conditions can be of Dirichlet type (<i>u</i> specified), or Neumann type (u_x specified), or a combination thereof: $\alpha_0 u(0, t) + \beta_0 u_x(0, t) = \tilde{f}_0(x), \min\{ \alpha_0 , \beta_0 \} > 0$ $\alpha_1 u(1, t) + \beta_1 u_x(1, t) = \tilde{f}_1(x), \min\{ \alpha_1 , \beta_1 \} > 0$ When $\beta_i = 0$, the numerical implementation of the boundary condition is trivial $\alpha_i v_l^n = \tilde{f}_l^n, l = \begin{cases} 0 & \text{when } i = 0 \\ M & \text{when } i = 1 \end{cases}$			
Peter Blomgren, (blomgren.peter@gmail.com) Boundary Conditions; 2D and 3D - (5/26)	Peter Blomgren, {blomgren.peter@gmail.com} Boundary Conditions; 2D and 3D — (6/26)			
Boundary Conditions Fundamentals 2D and 3D Higher Order Accurate Schemes	Boundary Conditions Fundamentals 2D and 3D Higher Order Accurate Schemes			
Neumann (or Mixed-Type) Boundary Conditions 1 of 2	Neumann (or Mixed-Type) Boundary Conditions 2 of 2			
When $\beta_i \neq 0$, then several possibilities present themselves. For a pure Neumann boundary condition at $x = 0$	The first formula originates from the second-order accurate one-sided approximation			
$u_{x}(t,0) = 0, \text{ no-flux}$ We can use $v_{0}^{n+1} = \frac{4v_{1}^{n+1} - v_{2}^{n+1}}{3}$ or $v_{0}^{n+1} = 2v_{0}^{n} - v_{0}^{n-1} - 2a^{2}\lambda^{2}(v_{0}^{n} - v_{1}^{n})$	$u_{x}(0) = \frac{4u(h) - 3u(0) - u(2h)}{2h} + \mathcal{O}(h^{2}),$ and the second from applying the scheme $\frac{v_{m}^{n+1} - 2v_{m}^{n} + v_{m}^{n-1}}{k^{2}} = a^{2} \frac{v_{m+1}^{n} - 2v_{m}^{n} + v_{m-1}^{n}}{h^{2}},$ at $m = 0$, and eliminating the ghost point v_{-1}^{n} using the central second-order difference			

SAN DIEGO STATE UNIVERSITY

— (7/26)

$$\frac{v_1^n - v_{-1}^n}{2h} = 0.$$

First-order one-sided differences should be avoided, since they will degrade the overall accuracy of the scheme.

Peter Blomgren, (blomgren.peter@gmail.com)

Boundary Conditions; 2D and 3D

— (8/26)

BC's for Higher Order Accurate Schemes 1 of 2	BC's for Higher Order Accura				
	U U U U U U U U U U U U U U U U U U U	te Schemes			2 of 2
The scheme $\frac{v_m^{n+1} - 2v_m^n + v_m^{n-1}}{k^2} = a^2 \left(1 - \frac{h^2}{12}\delta^2\right) \delta^2 v_m^n$ is accurate of order (2,4) for the wave equation $u_{tt} = a^2 u_{xx}$.	If the value on the boundary is specified, then the value next to the boundary can be determined by interpolation, <i>e.g.</i> $v_1^{n+1} = \frac{1}{4} \left(v_0^{n+1} + 6v_2^{n+1} - 4v_3^{n+1} + v_4^{n+1} \right)$ which comes from (the numerical BC — $\frac{\partial^4}{\partial x}u = 0$): $h^4 \delta_+^4 v_0^{n+1} = 0$. Applying this scheme with Neumann/mixed boundary conditions becomes quite challenging; — we can use (1) two layers of "ghost points," v_{-1}^n , and v_{-2}^n , which must be eliminated; or (2) non-symmetric finite differencing in the x-direction. In both settings we (α) have to match the order of the scheme, and (β) analyze the stability [lecture notes #19].				
Peter Blomgren, (blomgren.peter@gmail.com) Boundary Conditions; 2D and 3D (9/26)	Peter Blomgren, (blomgren	.peter@gmail.c	com Bounda	ary Conditions; 2D and 3D	D — (10/26)
Boundary Conditions Fundamentals 2D and 3D Higher Order Accurate Schemes	Boundary Conditions Fundamentals 2D and 3D Higher Order Accurate Schemes				
BC's for the Euler-Bernoulli Equation 1 of 3	BC's for the Euler-Bernoulli Equation 2 of 3				
Next, we consider the Euler-Bernoulli equation $u_{tt} = -b^2 u_{xxxx}$	Boundary Type Free End	u	u'	$\frac{\mathbf{u}''}{u''=0}$	$\frac{\mathbf{u}^{\prime\prime\prime}}{u^{\prime\prime\prime}} = 0$
and the second order accurate scheme $\frac{v_m^{n+1} - 2v_m^n + v_m^{n-1}}{v_m^2} = -b^2 \frac{v_{m+2}^n - 4v_{m+1}^n + 6v_m^n - 4v_{m-1}^n + v_{m-2}^n}{v_m^4}$	Simply Supported End Point Force at End Point Torque at End	fixed		u'' = 0 $u'' = 0$ specified	specified u''' = 0
		Δu	<u>Δu′</u>	Δ u″	Δ u‴
Here, we are going to need 2 boundary conditions at each end-point: Figure: Illustration of physical boundary conditions, in the left figure the beam is	Interior Clamp Interior Simple Support Interior Point Force Interior Point Torque Note:	$\Delta u = 0$ $\Delta u = 0$ $\Delta u = 0$ $\Delta u = 0$: Here $\Delta u'$	$\Delta u' = 0$ $\Delta u' = 0$ $\Delta u' = 0$ $\Delta u' = 0$ $' \equiv u''(x_{righ})$	$\begin{aligned} \Delta u'' &= 0\\ \Delta u'' &= 0\\ \Delta u'' \text{ specified} \end{aligned}$ $\begin{aligned} & \text{ or } u''(x_{\text{left}}). \end{aligned}$	$\Delta u'''$ specified $\Delta u''' = 0$

— (11/26)

is fixed in place at x = 0 but is allowed to pivot, and we have $u(t, 0) = u_{xx}(t, 0) = 0$. In both cases the right end of the beam is free to move, and the boundary conditions are $u_{xx}(t, L) = u_{xxx}(t, L) = 0$.

http://en.wikipedia.org/wiki/Euler-Bernoulli_beam_equation

— (12/26)

SAN DIEGO STATE UNIVERSITY

(20/26)

