Numerical Solutions to PDEs

Lecture Notes \＃16
－Analysis of Well－Posed and Stable Problems－
A Quick Overview

Peter Blomgren，

〈blomgren．peter＠gmail．com〉

Department of Mathematics and Statistics Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego，CA 92182－7720
http：／／terminus．sdsu．edu／

Spring 2018

| Peter Blomgren，\langle blomgren．peter＠gmail．com \rangle | Analysis of Well－Posed and Stable Problems |
| :---: | :--- |\quad —（1／34）

In the next ≈ 3 lectures we will cover the high－lights of chapters 9－11：
＂Analysis of Well－Posed and Stable Problems＂，＂Convergence Estimates for Initial Value Problems＂，and＂Well－Posed and Stable Initial－Boundary Value Problems．＂

The purpose is to showcase some of the theoretical results and tools which may be useful to a computational scientist，without delving into all the finer details of every proof．．．

We start out with well－posedness，a key concept in scientific modeling and the understanding of finite difference schemes used in computations．

Many of the ideas go back to Jacques S．Hadamard（1865－1963），and make plenty use of Fourier（von Neumann）analysis．The culmination of our discussion of well－posedness is the statement of the Kreiss matrix theorem．

Spatial derivatives up to 4th order are quite common（e．g．Beam Equation（s））
It is quite rare（we have to venture outside of classical mechanics）to see time－derivatives beyond 2nd order；however we can give useful interpretations up to order 4：
－\vec{x}－Position
－$\frac{\partial}{\partial t} \vec{x}$－Velocity
－$\frac{\partial^{2}}{\partial t^{2}} \vec{x}$－Acceleration
－$\frac{\partial^{3}}{\partial t^{3}} \vec{x}$－Jerk（Jolt）
－$\frac{\partial^{4}}{\partial t^{4}} \vec{x}$ — Snap（Jounce）
The Jerk shows up in the description of the Abraham－Lorentz force （electromagnetism），which appears in the context of Wheeler－Feynman absorber theory（an interpretation of electrodynamics derived from the assumption that the solutions of the electromagnetic field equations must be invariant under time－reversal transformation，as are the field equations themselves．）

Wikipedia has some interesting rabbit－holes to explore．．．

Analysis of Well－Posed and Stable Problems
$-(5 / 34)$

$$
\begin{aligned}
& \text { Systems of Equations } \\
& \text { Systems of Equations, ctd. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Introduction: Well-Posed IVPs } \\
& \text { First Order (Time) PDFs }
\end{aligned}
$$

$$
\begin{aligned}
& \text { First Order (Time) PDEs } \\
& \text { Higher Order (Time) Equations }
\end{aligned}
$$

Definition（Well－Posedness of the IVP）

The initial value problem for a first－order equation is well－posed if for each positive T there is a constant C_{T} such that the inequality

$$
\|u(t, \circ)\| \leq C_{T}\|u(0, \circ)\|,
$$

holds for all initial data $u(0, x)$ ．

Generally，we use the L^{2}－norm in the estimate：－This allows us to use Fourier analysis to get sufficient and necessary conditions for the IVP to be well－posed．
For $L^{p}(p \neq 2)$ norms，there is no relation like Parseval＇s relation for the L^{2}－norm，which makes the analysis harder；e．g．with the L^{1} and L^{∞}－norms it is usually possible to get sufficient or necessary conditions， but not（sufficient and necessary）conditions．

Here we are concerned with linear problems（the story for non－linear problems is quite different），the continuity condition is satisfied if the solution to the PDE satisfies

$$
\|u(t, \circ)\| \leq C_{T}\|u(0, \circ)\|, \quad t \leq T
$$

measured in some norm，i．e．$L^{p}, W^{k, p}, H^{k}=W^{k, 2}\left(L^{2}=H^{0}=W^{0,2}\right)$ ， where C_{T} is a constant independent of the solution．

If we have two solutions $v(t, x)$ ，and $w(t, x)$ ，then by the linearity

$$
\|v(t, \circ)-w(t, \circ)\| \leq C_{T}\|v(0, \circ)-w(0, \circ)\|,
$$

which shows that small changes in initial data results in small（bounded by a multiplicative constant）changes in the solution at time $t \leq T$ ．

Peter Blomgren，〈blomgren．peter＠gmail．com〉	Analysis of Well－Posed and Stable Problems	－（6／34）
Analysis of Well－Posed and Stable Problems Systems of Equations Systems of Equations，ctd．	Introduction：Well－Posed IVPs First Order（Time）PDEs Higher Order（Time）Equations	
Robustness－Lower Order Terms		1 of 2

Another important property for a PDE to be relevant model of a physical process is that the qualitative（overall／general）behavior of the solution is largely unaffected by the addition of，or changes in，lower order terms．

This robustness condition is not always met，but is highly desirable．－Almost all derivations of equa－ tions which are meant to model physical processes make certain assumptions，e．g．＂assume a spher－ ical cow＂，＂assume that the temperature of the body is constant＂，＂we may ignore gravitational forces＂，＂consider a homogeneous body＂，etc．

Consider a spherical cow of radius R ．．． etc．etc．

These assumptions really only work when small deviations in said quantities，i．e．the non－sphericalness of a cow，may be ignored without impacting the analysis．

Robustness is also important in the view of numerical solutions， since errors introduced by finite differencing，floating point computations，and／or measured（or simulated）initial data may be viewed as perturbations to，or addition of，lower order terms
For non－robust equations，greater care must be taken when devising numerical schemes．

For now，we restrict our discussion to linear PDEs with constant coefficients，with one time－derivative，e．g．

$$
\begin{array}{ll}
u_{t}+a u_{x}=0 & u_{t}-b u_{x x}+a u_{x}=0 \\
u_{t}-c u_{t x x}+b u_{x x x x}=0 & u_{t}+c u_{t x}+a u_{x}=0 \\
u_{t}=b u_{x x} &
\end{array}
$$

Peter Blomgren，〈blomgren．peter＠gmail．com〉	Analysis of Well－Posed and Stable Prob
Analysis of Well－Posed and Stable Problems Systems of Equations Systems of Equations，ctd．	Introduction：Well－Posed IVPs First Order（Time）PDEs Higher Order（Time）Equations
Well－and III－Posed Equations	
The following equations are robust $\begin{aligned} u_{t} & =a u_{x}+c u \\ u_{t}-u_{t x x} & =a u_{x}+c u \end{aligned}$	$\begin{aligned} u_{t} & =u_{x x}+c u_{x} \\ u_{t}+u_{t x} & =b u_{x x}+c u_{x} \end{aligned}$

for all values of c ．Notice that \bar{q} may depend on c ，but not on ω ．
The following equation

$$
u_{t}=u_{x x x}+c u_{x x}
$$

satisfies the well－posedness condition $\operatorname{Re}(q(\omega)) \leq \bar{q}$ for non－negative values of c ，but not if c is negative．Hence this equation is not robust when $c=0$ ，since a small perturbation may send it in the wrong direction．
Any linear equation of first order（time）can，with the help of the Fourier transform，be written in the form

$$
\widehat{u}_{t}(t, \omega)=q(\omega) \widehat{u}(t, \omega)
$$

which gives the solution to the initial value problem

$$
\widehat{u}(t, \omega)=e^{q(\omega) t} \widehat{u}_{0}(\omega)
$$

in the Fourier domain．
With this notation，we can formalize what is required for well－posedness for these problems：

Theorem（Well－Posedness for First Order PDEs）

The necessary and sufficient condition for

$$
\widehat{u}_{t}(t, \omega)=q(\omega) \widehat{u}(t, \omega),
$$

to be well－posed，that is，to satisfy the estimate

$$
\|u(t, \circ)\| \leq C_{T}\|u(0, \circ)\|,
$$

is that there is a constant \bar{q} such that

$$
\operatorname{Re}(q(\omega)) \leq \bar{q},
$$

for all real values of ω ．

If the theorem does not hold，then small errors of high frequency $|\omega|$ can dominate the true solution．

When we have more than one time－derivative in the PDE，the symbol $p(s, \omega)$ is a polynomial in s ．If the roots of the symbol are $\left\{q_{1}(\omega), q_{2}(\omega), \ldots, q_{r}(\omega)\right\}$ then any function of the form

$$
e^{q_{\nu}(\omega) t} e^{i \omega x} \Psi(\omega)
$$

is a solution of the PDE．
A necessary condition for well－posedness is that all roots satisfy

$$
\operatorname{Re}\left(q_{\nu}(\omega)\right) \leq \bar{q}
$$

for some $\bar{q} \in \mathbb{R}$ ．For second－order equations this is also sufficient．
We restrict our discussion of higher－order equations to some typical cases rather than develop a full theory for well－posedness．．．

```
irst Order (Time) PDEs
Higher Order (Time) Equations
```


A Note on the Square－Root in \mathbb{C}

If we think of a complex number，$z \in \mathbb{C}$ in terms of its magnitude $r=|z|$ ，and angle θ ，where $\tan (\theta)=\operatorname{imag}(z) / \operatorname{real}(z)$ ；we have

$$
z=r e^{i \theta}=(r \cos (\theta)+i r \sin (\theta)),
$$

and we can define

$$
\sqrt{z}=\sqrt{r} e^{i \theta / 2} .
$$

This all makes（unique）sense once we restrict the angle to any 2π－interval by introducing a branch cut．

One possibility is to cut along the imaginary axis，and let $\theta \in(\pi, p i]$ ．

Figure：We can take 2 copies（sheets）of \mathbb{C} with a branch－cuts，and glue them together；this way we get a surface with $\theta \in(-2 \pi, 2 \pi]$ ．The square－root as－ sociated with cork－screw space fills \mathbb{C} ，with $\theta_{\text {sqrt }} \in(-\pi, \pi]$ ．If we identify the ＂loose ends＂（ -2π ）and（ 2π ）we see that the square root will map a trip＂around the cork－screw space＂into a unique trip around the complex plane．．．Interesting 1－to－1 correspondence，eh？

$$
2 \text { Sheets of } \mathcal{C} \quad \sqrt{z}:(2 \times \mathcal{C}) \rightarrow \mathcal{C}
$$

Peter Blomgren，〈blomgren．peter＠gmail．com
Analysis of Well－Posed and Stable Problems Systems of Equations，ctd．

Analysis of Well－Posed and Stable Problems
（17／34）
Introduction：Well－Posed IVPs
First Order（Time）PDEs
Higher Order（Time）Equations
The Euler－Bernoulli Equation：Lower Order Terms

Lower order terms can severely impact the well－posedness of the IVP for the Euler－Bernoulli equation，consider

$$
u_{t t}=-b^{2} u_{x x x x}+c u_{x x x} .
$$

The corresponding symbol is

$$
p(s, \omega)=s^{2}-r(\omega)=s^{2}+b^{2} \omega^{4}+\mathbf{i} \mathbf{c} \omega^{3}
$$

so that，with a little help from Taylor

$$
q_{ \pm}(\omega)= \pm\left[i b \omega^{2}-\frac{\mathbf{c} \omega}{2 \mathbf{b}}+\mathcal{O}(1) .\right]
$$

When $c \neq 0$ ，each root violates $\operatorname{Re}\left(q_{ \pm}(\omega)\right) \leq \bar{q}$ for either positive or negative values of ω ．

For second order equations of the form $u_{t t}=R\left(\partial_{x}\right) u$ ，with symbols $p(s, \omega)=s^{2}-r(\omega)$ ，we get the roots

$$
q_{ \pm}= \pm \sqrt{r(\omega)}
$$

and we must require that $r(\omega)$ must be close to（or on）the negative real axis－otherwise the square－root may end up＂too deep＂into the right half－plane．
The Wave－and Euler－Bernoulli equations

$$
u_{t t}-a^{2} u_{x x}=0, \quad u_{t t}=-b^{2} u_{x x x x},
$$

provide examples of this type．

Peter Blomgren，〈blomgren．peter＠gmail．com〉 Analysis of Well－Posed and Stable Problems

Well－Posedness of the Second－Order IVP

Theorem（Well－Posedness of the Second－Order IVP）

The initial value problem for the second－order equation

$$
u_{t t}=R\left(\partial_{x}\right) u
$$

（where $r(\omega)$ ，the symbol of $R\left(\partial_{\chi}\right)$ ，is a polynomial of degree 2ρ ）is well－posed if for each positive $t>0$ there is a constant C_{t} such that for all solutions u

$$
\|u(t, \circ)\|_{H^{\rho}}+\left\|u_{t}(t, \circ)\right\|_{H^{0}} \leq C_{t}\left(\|u(0, \circ)\|_{H^{\rho}}+\left\|u_{t}(0, \circ)\right\|_{H^{0}}\right) .
$$

Recall

$$
\|u\|_{H^{r}}^{2}:=\int_{-\infty}^{\infty}\left(1+|\omega|^{2}\right)^{r}|\widehat{u}(\omega)|^{2} d \omega .
$$

With the help of the Fourier transform，any $d \times d$－system of first order can be put in the form

$$
\widehat{u}_{t}=Q(\omega) \widehat{u},
$$

where $\widehat{u} \in \mathbb{C}^{d}$ ，and $Q(\omega) \in \mathbb{C}^{d \times d}$ ．We can also let $\omega \in \mathbb{R}^{n}, n>1$ if we are considering multiple space dimensions．

The solution of the IVP is given by

$$
\widehat{u}(t, \omega)=e^{Q(\omega) t} \widehat{u}_{0}(\omega) .
$$

We formalize the well－posedness requirements in a theorem：．．．

Analysis of Well－Posed and Stable Problems
Well－Posedness for First Order Systems
General Definitions：Parabolic \＆Hyperholic System Lower Order Terms

Special Case：$Q(\omega)=U(\omega)$ ，Upper Triangular

Lemma

Let U be an upper triangular matrix $\in \mathbb{C}^{d \times d}$ and let

$$
\bar{u}=\max _{1 \leq i \leq d} \operatorname{Re}\left(u_{i i}\right), \quad u^{*}=\max _{j>i}\left|u_{i j}\right| .
$$

Then there is a constant C_{d} ，such that

$$
\left\|e^{U t}\right\| \leq C_{d} e^{\bar{\omega} t}\left(1+\left(t u^{*}\right)^{d-1}\right) .
$$

This lemma is used in conjunction with Schur＇s lemma（Math 543，or Strikwerda appendix A），which states that for any matrix $Q(\omega)$ we can find a unitary matrix $O(\omega),\left(O(\omega)^{H} O(\omega)=I\right.$ ，and $\left.\|O(\omega)\|_{2}=1\right)$ ，such that

$$
\tilde{Q}(\omega)=O(\omega) Q(\omega) O(\omega)^{-1}
$$

is an upper triangular matrix

Definition（Parabolic System of PDEs）

The system

$$
u_{t}=\sum_{j_{1}, j_{2}=1}^{n} B_{j_{1}, j_{2}} \frac{\partial^{2} u}{\partial x_{j_{1}} \partial x_{j_{2}}}+\sum_{j=1}^{n} C_{j} \frac{\partial u}{\partial x_{j}}+D u
$$

for which

$$
Q(\omega)=-\sum_{j_{1}, j_{2}=1}^{n} B_{j_{1}, j_{2}} \omega_{j_{1}} \omega_{j_{2}}+i \sum_{j=1}^{n} C_{j} \omega_{j}+D
$$

is parabolic if the eigenvalues，q_{ν} ，of $Q(\omega)$ satisfy

$$
\operatorname{Re}\left(q_{\nu}\right) \leq a-b|\omega|^{2}
$$

for some constant a ，and some positive constant b ．

Analysis of Well－Posed and Stable Problems

Definition（Hyperbolic System of PDEs）

The system

$$
u_{t}=\sum_{j=1}^{n} A_{j} \frac{\partial u}{\partial x_{j}}+B u, \quad \text { for which } \quad Q(\omega)=i \sum_{j=1}^{n} A_{j} \omega_{j}+B
$$

is hyperbolic if the eigenvalues，q_{ν} ，of $Q(\omega)$ satisfy

$$
\operatorname{Re}\left(q_{\nu}\right) \leq c
$$

for some constant c ，and if $Q(\omega)$ is uniformly diagonalizable for large ω ，i．e．for $|\omega|>K, \exists M(\omega)$ such that $M(\omega) Q(\omega) M^{-1}(\omega)$ is diagonal and $\|M(\omega)\| \leq M_{b},\left\|M^{-1}(\omega)\right\| \leq M_{b}$ ，independently of ω ．

1

Peter Blomgren，〈blomgren．peter＠gmail．com〉 Analysis of Well－Posed and Stable Problems —（26／34）

Theorem（Well－Posedness and Lower Order Terms）
If the system

$$
\widehat{u}_{t}=Q(\omega) \widehat{u}
$$

satisfies

$$
\left\|e^{Q(\omega) t}\right\| \leq K_{t} e^{-b|\omega|^{\rho} t}
$$

for some positive constants b and ρ ，with K_{t} independent of ω ，and if $Q_{0}(\omega)$ satisfies

$$
\left\|Q_{0}(\omega)\right\| \leq c_{0}|\omega|^{\sigma}
$$

with $\sigma<\rho$ ，then the system

$$
\widehat{u}_{t}=\left(Q(\omega)+Q_{0}(\omega)\right) \widehat{u}
$$

is also well－posed

For inhomogeneous problems，$P u=f$ ，all the estimates and bounds will contain the energy added by the forcing function $f(t, x)$ ，e．g．for a first－order problem we can，as usual with the Fourier transform，write

$$
\widehat{u}_{t}(t, \omega)=q(\omega) \widehat{u}(t, w)+r(\omega) \widehat{f}(t, \omega)
$$

For well－posedness we need

$$
\operatorname{Re}(q(\omega)) \leq \bar{q}, \quad|r(\omega)| \leq C_{1} .
$$

The solution is given by

$$
\widehat{u}(t, \omega)=e^{q(\omega) t} \widehat{u}_{0}(\omega)+r(\omega) \int_{0}^{t} e^{q(\omega)(t-s)} \widehat{f}(s, \omega) d s
$$

Analysis of Well－Posed and Stable Problems

Theorem（Kreiss Matrix Theorem — pt．1）

For a family \mathcal{F} of $M \times M$ matrices，the following statements are equivalent：

A：There exists a positive constant C_{a} such that for all $A \in \mathcal{F}$ and each non－negative integer n ，

$$
\left\|A^{n}\right\| \leq C_{a} .
$$

R ：There exists a positive constant C_{r} such that for all $A \in \mathcal{F}$ and all complex numbers z with $|z|>1$ ，

$$
\left\|(z \mid-A)^{-1}\right\| \leq C_{r}(|z|-1)^{-1} .
$$

We quickly get the following bound

$$
|\widehat{u}(t, \omega)|^{2} \leq C e^{2 \bar{q} t}\left[\left|\widehat{u}_{0}(\omega)\right|^{2}+\int_{0}^{t}|\widehat{f}(s, \omega)|^{2} d s\right],
$$

and by Parseval＇s relation

$$
\|u(t, \circ)\|^{2} \leq C e^{2 \bar{q} t}\left[\left\|u_{0}\right\|^{2}+\int_{0}^{t}\|f(s, o)\|^{2} d s\right] .
$$

Analogously，for a corresponding finite difference scheme we get

$$
\left\|v^{n}\right\|^{2} \leq C_{T}\left[\left\|v^{0}\right\|^{2}+k \sum_{\ell=0}^{n}\left\|f^{\ell}\right\|^{2}\right] .
$$

Duhamel＇s principle states that the solution to an inhomogeneous problem can be written as a super－position of solutions to homogeneous IVPs．．．One homogeneous IVP per time－level．

Peter Blomgren，〈blomgren．peter＠gmail．com〉 Analysis of Well－Posed and Stable Problems

Systems of Equations，ctd．The Kreiss Matrix Theorem
The Kreiss Matrix Theorem

Theorem（Kreiss Matrix Theorem－pt．2）
S ：There exists positive constants C_{s} and C_{b} such that for each $A \in \mathcal{F}$ there is a non－singular Hermitian matrix S such that $B=S A S^{-1}$ is upper triangular and

$$
\begin{gathered}
\|S\|,\left\|S^{-1}\right\| \leq C_{s} \\
\left|B_{i i}\right| \leq 1 \\
\left|B_{i j}\right| \leq C_{b} \min \left\{1-\left|B_{i i}\right|, 1-\left|B_{j j}\right|\right\}
\end{gathered}
$$

for $i<j$ ．
H ：There exists a positive constant C_{h} such that for each $A \in \mathcal{F}$ there is a Hermitian matrix H such that

$$
\begin{gathered}
C_{h}^{-1} I \leq H \leq C_{h} I \\
A^{*} H A \leq H .
\end{gathered}
$$

Theorem（Kreiss Matrix Theorem — pt．3）

N ：There exists constants C_{n} and c_{n} such that for each $A \in \mathcal{F}$ there is a Hermitian matrix N such that

$$
\begin{gathered}
C_{n}^{-1} I \leq N \leq C_{n} I \\
\operatorname{Re}(N(I-z A)) \geq c_{n}(1-|z|) I
\end{gathered}
$$

for all complex numbers z with $|z| \leq 1$ ．
Ω ：There exists a positive constant C_{ω} such that for each $A \in \mathcal{F}$ there is a Hermitian matrix Ω such that

$$
\begin{gathered}
C_{\omega}^{-1} I \leq \Omega \leq C_{\omega} I \\
\sup _{x \neq 0} \frac{\left|\left(\Omega A^{n} x, x\right)\right|}{(\Omega x, x)} \leq 1
\end{gathered}
$$

The theorem is of theoretical importance since it relates stability （condition A ），with equivalent conditions that may be useful in different contexts．

It is of limited practical use in determining stability，since verifying any of the conditions is usually as difficult as verifying condition A itself．

In some applications it is important to know when the matrices H ， N ，and Ω can be constructed by（locally）continuous functions of the members of \mathcal{F} ．

