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Introduction

In the next ≈ 3 lectures we will cover the high-lights of chapters 9–11:
“Analysis of Well-Posed and Stable Problems”, “Convergence
Estimates for Initial Value Problems”, and “Well-Posed and Stable
Initial-Boundary Value Problems.”

The purpose is to showcase some of the theoretical results and tools
which may be useful to a computational scientist, without delving into all
the finer details of every proof...

We start out with well-posedness, a key concept in scientific modeling
and the understanding of finite difference schemes used in computations.

Many of the ideas go back to Jacques S. Hadamard (1865–1963), and
make plenty use of Fourier (von Neumann) analysis. The culmination of
our discussion of well-posedness is the statement of the Kreiss matrix
theorem.
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Well-Posed Initial Value Problems

Some equations, e.g.

Wave Eqn.: utt − a2uxx = 0, Heat Eqn.: ut = buxx ,

and variants thereof, arise frequently in applied mathematics, but other
equations, such as

utt = ux ,

do not show up as governing equations of physical systems. It is natural
to ask why?!

In order to be a useful model of a well-behaved physical process, a PDE
must have several properties, one of which is that the solution should
depend on initial (boundary) data in a continuous way, so that small
errors due to physical experimentation and numerical representation do
not overwhelm the solution; here the definition of “small” must be
reasonable (‖uxxx‖ ≤ ǫ is usually not...)
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A Note on Higher-Order Time Derivatives

Spatial derivatives up to 4th order are quite common (e.g. Beam Equation(s)).

It is quite rare (we have to venture outside of classical mechanics) to see
time-derivatives beyond 2nd order; however we can give useful interpretations up to
order 4:

~x — Position
∂
∂t

~x — Velocity

∂2

∂t2
~x — Acceleration

∂3

∂t3
~x — Jerk (Jolt)

∂4

∂t4
~x — Snap (Jounce)

The Jerk shows up in the description of the Abraham–Lorentz force
(electromagnetism), which appears in the context of Wheeler–Feynman absorber
theory (an interpretation of electrodynamics derived from the assumption that the
solutions of the electromagnetic field equations must be invariant under time-reversal
transformation, as are the field equations themselves.)

Wikipedia has some interesting rabbit-holes to explore...
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The Continuity Condition

Here we are concerned with linear problems (the story for non-linear
problems is quite different), the continuity condition is satisfied if the
solution to the PDE satisfies

‖u(t, ◦)‖ ≤ CT‖u(0, ◦)‖, t ≤ T ,

measured in some norm, i.e. Lp, W k,p, Hk = W k,2 (L2 = H0 = W 0,2),
where CT is a constant independent of the solution.

If we have two solutions v(t, x), and w(t, x), then by the linearity

‖v(t, ◦)− w(t, ◦)‖ ≤ CT‖v(0, ◦)− w(0, ◦)‖,

which shows that small changes in initial data results in small (bounded
by a multiplicative constant) changes in the solution at time t ≤ T .
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Well-Posedness of the IVP Definition

Definition (Well-Posedness of the IVP)

The initial value problem for a first-order equation is well-posed if for
each positive T there is a constant CT such that the inequality

‖u(t, ◦)‖ ≤ CT‖u(0, ◦)‖,

holds for all initial data u(0, x).

Generally, we use the L2-norm in the estimate: — This allows us to use
Fourier analysis to get sufficient and necessary conditions for the IVP to
be well-posed.

For Lp (p 6= 2) norms, there is no relation like Parseval’s relation for the
L2-norm, which makes the analysis harder; e.g. with the L1 and
L∞-norms it is usually possible to get sufficient or necessary conditions,
but not ( sufficient and necessary ) conditions.
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Robustness — Lower Order Terms 1 of 2

Another important property for a PDE to be relevant model of a physical
process is that the qualitative (overall / general) behavior of the solution
is largely unaffected by the addition of, or changes in, lower order terms.

This robustness condition is not always met, but is
highly desirable. — Almost all derivations of equa-
tions which are meant to model physical processes
make certain assumptions, e.g. “assume a spher-
ical cow”, “assume that the temperature of the
body is constant”, “we may ignore gravitational
forces”, “consider a homogeneous body”, etc.
etc. etc.

These assumptions really only work when small deviations in said
quantities, i.e. the non-sphericalness of a cow, may be ignored without
impacting the analysis.
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Robustness — Lower Order Terms 2 of 2

Robustness is also important in the view of numerical solutions,
since errors introduced by finite differencing, floating point
computations, and/or measured (or simulated) initial data may be
viewed as perturbations to, or addition of, lower order terms.

For non-robust equations, greater care must be taken when
devising numerical schemes.

For now, we restrict our discussion to linear PDEs with constant
coefficients, with one time-derivative, e.g.

ut + aux = 0 ut − buxx + aux = 0
ut − cutxx + buxxxx = 0 ut + cutx + aux = 0
ut = buxx
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First Order (Time) PDEs

Any linear equation of first order (time) can, with the help of the
Fourier transform, be written in the form

ût(t, ω) = q(ω)û(t, ω)

which gives the solution to the initial value problem

û(t, ω) = eq(ω)t û0(ω)

in the Fourier domain.

With this notation, we can formalize what is required for
well-posedness for these problems:
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Well-posedness for First Order (Time) PDEs

Theorem (Well-Posedness for First Order PDEs)

The necessary and sufficient condition for

ût(t, ω) = q(ω)û(t, ω),

to be well-posed, that is, to satisfy the estimate

‖u(t, ◦)‖ ≤ CT‖u(0, ◦)‖,

is that there is a constant q such that

Re
(
q(ω)

)
≤ q,

for all real values of ω.

If the theorem does not hold, then small errors of high frequency |ω| can
dominate the true solution.
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Well- and Ill-Posed Equations

The following equations are robust

ut = aux + cu ut = uxx + cux
ut − utxx = aux + cu ut + utx = buxx + cux

for all values of c . Notice that q may depend on c , but not on ω.

The following equation

ut = uxxx + cuxx

satisfies the well-posedness condition Re
(
q(ω)

)
≤ q for

non-negative values of c , but not if c is negative. Hence this
equation is not robust when c = 0, since a small perturbation may
send it in the wrong direction.
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Higher Order Equations The Return of the Symbol

When we have more than one time-derivative in the PDE, the
symbol p(s, ω) is a polynomial in s. If the roots of the symbol are
{q1(ω), q2(ω), . . . , qr (ω)} then any function of the form

eqν(ω)te iωxΨ(ω)

is a solution of the PDE.

A necessary condition for well-posedness is that all roots satisfy

Re
(
qν(ω)

)
≤ q

for some q ∈ R. For second-order equations this is also sufficient.

We restrict our discussion of higher-order equations to some typical
cases rather than develop a full theory for well-posedness...
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Briefly Returning to the Question of Well-Posedness of utt = ux

We can now answer why the equation

utt = ux

does not show up as a useful model for any well-behaved physical
process.

The corresponding symbol is

p(s, ω) = s2 − iω,

which has the roots

q±(ω) = ± 1 + i√
2
|ω|1/2,

for which we cannot bound the real part independent of ω.
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A Note on the Square-Root in C

If we think of a complex number, z ∈ C in terms of its magnitude
r = |z |, and angle θ, where tan(θ) = imag(z)/real(z); we have

z = r e iθ = (r cos(θ) + i r sin(θ)),

and we can define √
z =

√
r e iθ/2.

This all makes (unique) sense once we restrict the angle to any
2π-interval by introducing a branch cut.

One possibility is to cut along the imaginary axis, and let
θ ∈ (π, pi ].
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A Note on the Square-Root in C

Figure: C with a branch-cut along the negative imaginary axis; θ ∈ (−π, π].
The square-root associated with this branch ends up in the right half plane, with
θsqrt ∈ (−π/2, π/2].
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A Note on the Square-Root in C

Figure: We can take 2 copies (sheets) of C with a branch-cuts, and glue them
together; this way we get a surface with θ ∈ (−2π, 2π]. The square-root as-
sociated with cork-screw space fills C, with θsqrt ∈ (−π, π]. If we identify the
“loose ends” (−2π) and (2π) we see that the square root will map a trip “around
the cork-screw space” into a unique trip around the complex plane... Interesting
1-to-1 correspondence, eh?

-1

0
1

0
1 -1

-1

0

1 -1
0

1

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Analysis of Well-Posed and Stable Problems — (17/34)



Analysis of Well-Posed and Stable Problems
Systems of Equations

Systems of Equations, ctd.

Introduction: Well-Posed IVPs
First Order (Time) PDEs
Higher Order (Time) Equations

Second Order Equations

For second order equations of the form utt = R(∂x)u, with
symbols p(s, ω) = s2 − r(ω), we get the roots

q± = ±
√
r(ω),

and we must require that r(ω) must be close to (or on) the
negative real axis — otherwise the square-root may end up “too
deep” into the right half-plane.

The Wave- and Euler-Bernoulli equations

utt − a2uxx = 0, utt = −b2uxxxx ,

provide examples of this type.
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The Euler-Bernoulli Equation: Lower Order Terms

Lower order terms can severely impact the well-posedness of the IVP for
the Euler-Bernoulli equation, consider

utt = −b2uxxxx + cuxxx.

The corresponding symbol is

p(s, ω) = s2 − r(ω) = s2 + b2ω4 + icω3

so that, with a little help from Taylor

q±(ω) = ±
[
ibω2 − cω

2b
+O (1) .

]

When c 6= 0, each root violates Re
(
q±(ω)

)
≤ q for either positive or

negative values of ω.
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Well-Posedness of the Second-Order IVP

Theorem (Well-Posedness of the Second-Order IVP)

The initial value problem for the second-order equation

utt = R(∂x)u,

(where r(ω), the symbol of R(∂x), is a polynomial of degree 2ρ) is
well-posed if for each positive t > 0 there is a constant Ct such
that for all solutions u

‖u(t, ◦)‖Hρ + ‖ut(t, ◦)‖H0 ≤ Ct (‖u(0, ◦)‖Hρ + ‖ut(0, ◦)‖H0) .

Recall

‖u‖2Hr :=

∫ ∞

−∞

(
1 + |ω|2

)r |û(ω)|2 dω.
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Well-Posed Systems of Equations

With the help of the Fourier transform, any d × d-system of first
order can be put in the form

ût = Q(ω)û,

where û ∈ C
d , and Q(ω) ∈ C

d×d . We can also let ω ∈ R
n, n > 1

if we are considering multiple space dimensions.

The solution of the IVP is given by

û(t, ω) = eQ(ω)t û0(ω).

We formalize the well-posedness requirements in a theorem: ...
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Well-Posedness for First Order Systems

Theorem (Well-Posedness for First Order Systems)

The necessary and sufficient condition for

ût = Q(ω)û

to be well-posed is that for each t ≥ 0, there is a constant Ct such
that

‖eQ(ω)t‖ ≤ Ct

for all ω ∈ R
n. A necessary condition for this to be true is that

Re
(
qν(ω)

)
≤ q holds for all eigenvalues of Q(ω).

The theorem is hard to use for general systems, since finding the
eigenvalues may require a lot of work.
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Special Case: Q(ω) = U(ω), Upper Triangular

Lemma

Let U be an upper triangular matrix ∈ C
d×d and let

u = max
1≤i≤d

Re(uii ), u∗ = max
j>i

|uij |.

Then there is a constant Cd , such that

‖eUt‖ ≤ Cde
ut
(
1 + (tu∗)d−1

)
.

This lemma is used in conjunction with Schur’s lemma (Math 543, or
Strikwerda appendix A), which states that for any matrix Q(ω) we can
find a unitary matrix O(ω), (O(ω)HO(ω) = I , and ‖O(ω)‖2 = 1), such
that

Q̃(ω) = O(ω)Q(ω)O(ω)−1

is an upper triangular matrix.

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Analysis of Well-Posed and Stable Problems — (23/34)



Analysis of Well-Posed and Stable Problems
Systems of Equations

Systems of Equations, ctd.

Well-Posedness for First Order Systems
General Definitions: Parabolic & Hyperbolic Systems
Lower Order Terms

Well-Posedness for Systems

Now, we can write down a general inequality for all matrices Q(ω)

‖eQ(ω)t‖ = ‖eQ̃(ω)t‖ ≤ Cde
q(ω)t

(
1 + |tq∗(ω)|d−1

)
,

where

q(ω) = max
1≤ν≤d

Re(qν(ω)), q∗(ω) = max
j>i

|Q̃ij(ω)|.

We see that the eigenvalues (qν(ω)) enter the inequality in a very
predicable way, but that the well-posedness result also depends on
the off-diagonal elements of Q̃(ω), which (physically) say
something about how the quantities on û interact (are “mixed”)
over time.
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Parabolic Systems: General Definition

Definition (Parabolic System of PDEs)

The system

ut =
n∑

j1,j2=1

Bj1,j2

∂2u

∂xj1∂xj2
+

n∑

j=1

Cj

∂u

∂xj
+ Du

for which

Q(ω) = −
n∑

j1,j2=1

Bj1,j2ωj1ωj2 + i

n∑

j=1

Cjωj + D

is parabolic if the eigenvalues, qν , of Q(ω) satisfy

Re(qν) ≤ a− b|ω|2

for some constant a, and some positive constant b.
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Hyperbolic Systems: General Definition

Definition (Hyperbolic System of PDEs)

The system

ut =

n∑

j=1

Aj
∂u

∂xj
+ Bu, for which Q(ω) = i

n∑

j=1

Ajωj + B

is hyperbolic if the eigenvalues, qν , of Q(ω) satisfy

Re(qν) ≤ c

for some constant c , and if Q(ω) is uniformly diagonalizable for
large ω, i.e. for |ω| > K , ∃M(ω) such that M(ω)Q(ω)M−1(ω) is
diagonal and ‖M(ω)‖ ≤ Mb, ‖M−1(ω)‖ ≤ Mb, independently of ω.
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Lower Order Terms: General Results 1 of 2

Theorem (Well-Posedness and Lower Order Terms)

If the system
ût = Q(ω)û

is well-posed and the matrix Q0(ω) is bounded independently of ω,
then the system

ût = (Q(ω) + Q0(ω)) û

is also well-posed.

The theorem directly tells us that the matrix B in hyperbolic
systems, and the matrix D in parabolic systems do not affect the
well-posedness of the corresponding systems.

The next theorem takes care of the Cj (first-derivative) terms for
parabolic systems:
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Lower Order Terms: General Results 2 of 2

Theorem (Well-Posedness and Lower Order Terms)

If the system
ût = Q(ω)û

satisfies
‖eQ(ω)t‖ ≤ Kte

−b|ω|ρt

for some positive constants b and ρ, with Kt independent of ω, and if
Q0(ω) satisfies

‖Q0(ω)‖ ≤ c0|ω|σ

with σ < ρ, then the system

ût = (Q(ω) + Q0(ω)) û

is also well-posed.

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Analysis of Well-Posed and Stable Problems — (28/34)



Analysis of Well-Posed and Stable Problems
Systems of Equations

Systems of Equations, ctd.

Inhomogeneous Problems
The Kreiss Matrix Theorem

Inhomogeneous Problems 1 of 2

For inhomogeneous problems, Pu = f , all the estimates and
bounds will contain the energy added by the forcing function
f (t, x), e.g. for a first-order problem we can, as usual with the
Fourier transform, write

ût(t, ω) = q(ω)û(t,w) + r(ω)f̂ (t, ω)

For well-posedness we need

Re(q(ω)) ≤ q, |r(ω)| ≤ C1.

The solution is given by

û(t, ω) = eq(ω)t û0(ω) + r(ω)

∫ t

0
eq(ω)(t−s)f̂ (s, ω) ds.
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Inhomogeneous Problems 2 of 2

We quickly get the following bound

|û(t, ω)|2 ≤ Ce2qt
[
|û0(ω)|2 +

∫ t

0

|f̂ (s, ω)|2 ds
]
,

and by Parseval’s relation

‖u(t, ◦)‖2 ≤ Ce2qt
[
‖u0‖2 +

∫ t

0

‖f (s, ◦)‖2 ds
]
.

Analogously, for a corresponding finite difference scheme we get

‖vn‖2 ≤ CT

[
‖v0‖2 + k

n∑

ℓ=0

‖f ℓ‖2
]
.

Duhamel’s principle states that the solution to an inhomogeneous
problem can be written as a super-position of solutions to homogeneous
IVPs... One homogeneous IVP per time-level.
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The Kreiss Matrix Theorem 1 of 4

Theorem (Kreiss Matrix Theorem — pt.1)

For a family F of M ×M matrices, the following statements are
equivalent:

A: There exists a positive constant Ca such that for all A ∈ F and
each non-negative integer n,

‖An‖ ≤ Ca.

R: There exists a positive constant Cr such that for all A ∈ F and
all complex numbers z with |z | > 1,

‖(zI − A)−1‖ ≤ Cr (|z | − 1)−1.

. . .

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Analysis of Well-Posed and Stable Problems — (31/34)



Analysis of Well-Posed and Stable Problems
Systems of Equations

Systems of Equations, ctd.

Inhomogeneous Problems
The Kreiss Matrix Theorem

The Kreiss Matrix Theorem 2 of 4

Theorem (Kreiss Matrix Theorem — pt.2)

S: There exists positive constants Cs and Cb such that for each A ∈ F
there is a non-singular Hermitian matrix S such that B = SAS−1 is
upper triangular and

‖S‖, ‖S−1‖ ≤ Cs

|Bii | ≤ 1

|Bij | ≤ Cb min{1− |Bii |, 1− |Bjj |}

for i < j .

H: There exists a positive constant Ch such that for each A ∈ F there is
a Hermitian matrix H such that

C−1
h I ≤ H ≤ ChI

A∗HA ≤ H.
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Theorem (Kreiss Matrix Theorem — pt.3)

N: There exists constants Cn and cn such that for each A ∈ F there is a
Hermitian matrix N such that

C−1
n I ≤ N ≤ CnI

Re(N(I − zA)) ≥ cn(1− |z |)I

for all complex numbers z with |z | ≤ 1.

Ω: There exists a positive constant Cω such that for each A ∈ F there
is a Hermitian matrix Ω such that

C−1
ω I ≤ Ω ≤ CωI

sup
x 6=0

|(ΩAnx , x)|
(Ωx , x)

≤ 1.
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The theorem is of theoretical importance since it relates stability
(condition A), with equivalent conditions that may be useful in
different contexts.

It is of limited practical use in determining stability, since verifying
any of the conditions is usually as difficult as verifying condition A
itself.

In some applications it is important to know when the matrices H,
N, and Ω can be constructed by (locally) continuous functions of
the members of F .
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