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Convergence Estimates for Initial Value Problems

We show some estimates for the convergence of solutions of finite
difference schemes.

We are interested in the rate, O (hr ), of convergence of the
scheme to the solution of the PDE.

Breaking News!!!

The regularity (smoothness) of the initial condition(s) impacts the
convergence rate.

The discussion is restricted to one-step schemes for first-order
(time) scalar equations with constant coefficients. Most of the
results can (with “some work”) be extended to multi-step schemes,
systems, higher-order equations, and variable coefficient problems.
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Truncation: From Continuous Functions to the Grid

Definition (Truncation Operator, T : L2(R) → L2(hZ))

The truncation operator T maps functions in L2(R) to functions on
L2(hZ). Given u ∈ L2(R), we have

u(x) =
1√
2π

∫
∞

−∞

e ixξ û(ξ) dξ,

and T u is defined as

T um =
1√
2π

∫ π/h

−π/h

e imhξ û(ξ) dξ,

for each grid point mh ∈ hZ. Alternatively, the Fourier transform of T u

is given by

T̂ u(ξ) = û(ξ), for |ξ| ≤ π

h
. [Lowpass Filter]
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Illustration: The Truncation Operator
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Figure: A scaled version of Runge’s function: u(x) = 1
1+x2

truncated to the grid

hZ, where h = 1.0. The largest mismatch between u(xm) and T um is at xm = 0.
Notice that truncation is not the same thing as point-wise evaluation!
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Interpolation: From the Grid to Continuous Functions

Definition (Interpolation Operator, S : L2(hZ) → L2(R))

The interpolation operator S maps functions in L2(hZ) to functions on
L2(R). Given v ∈ L2(hZ), we have

vm =
1√
2π

∫ π/h

−π/h

e imhξ v̂(ξ) dξ,

and Sv(x) is defined as

Sv(x) = 1√
2π

∫ π/h

−π/h

e ixξ v̂(ξ) dξ,

for each x ∈ R. Alternatively, the Fourier transform of Sv(x) is given by

Ŝv(ξ) =
{

v̂(ξ) if |ξ| ≤ π/h
0 if |ξ| > π/h.
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Interpolation Operator — Implementation

Note that in order to implement the Interpolation Operator, we
either need

The analytic expression for v̂(ξ) (which is probably
cheating?), or

The expression from [Lecture #4]: — For a grid function vm
defined for all integers coordinates m, the Fourier transform is
given by

v̂(ξ) =
1√
2π

∞∑

m=−∞

e−imξ vm.
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Illustration: The Interpolation Operator
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Figure: The interpolation operator applied to two grid functions, on the left h = 1.0,
and on the right h = 0.5.
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Evaluation: From Continuous Functions to the Grid

For completeness, we also include the Evaluation operator in our
discussion

Definition (Evaluation Operator, E : F (R) → F (hZ))

The evaluation operator E maps functions on R to functions on
the grid hZ. Given u(x), the evaluation operator is defined by

Eu = u(mh), m ∈ Z.

Usually, we use v0m = Eu0 = u0(mh) as the initial conditions for
our numerical schemes.
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Numerical Schemes for PDEs

We now consider finite difference schemes for PDEs in the form

ût = q(ω)û.

As initial data we take the values given by the truncation operator, i.e.

v0
m = [T u0]m.

Usually, this in not what we do in practice. However, this initial data
gives the “cleanest” results.

Next, we redefine the order of accuracy in such a way that we can
quantify how much smoothness we must require of the initial data in
order for the order of accuracy of the solutions (global result) of the
scheme to equal the order of accuracy of the scheme (local result,
Taylor expansion).
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Order of Accuracy Old and New

Old Defintion: Order of Accuracy

A scheme Pk,hv = Rk,hf with k = Λ(h) that is consistent with the
differential equation Pu = f is accurate of order r if for any smooth
function Φ(t, x),

Pk,hΦ− Rk,hPΦ = O (hr ) .

Definition: Order of Accuracy

A one-step scheme for a first-order system in the form ût = q(ω)û with
k = Λ(h) is accurate of order [r, ρ] if there is a constant C such that for
|hξ| ≤ π ∣∣∣∣

ekq(ξ) − g(hξ, k , h)

k

∣∣∣∣ ≤ Chr(1 + |ξ|)ρ.
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Old Accuracy to New Accuracy...

Theorem

If a one-step finite difference scheme for a well-posed IVP is

accurate of order r according to the “old definition” then there is a

non-negative integer ρ such that the scheme is accurate of order

[r , ρ] according to the “new definition.”

Examples: Applied to the one-way wave-equation —

Scheme Old Accuracy New Accuracy

Lax-Friedrichs 1 [1, 2]
Lax-Wendroff 2 [2, 3]
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Key Result: Numerical Solution ↔ Solution of PDE

Theorem

If the IVP for a PDE of the form ût = q(ω)û, for which the IVP is

well-posed, is approximated by a stable one-step finite difference

scheme that is accurate of order [r , ρ] with r ≤ ρ, and the initial

function is T u0, where u0 is the initial function for the differential

equation, then for each time T there exists a constant CT such

that

‖u(tn, ◦)− Svn‖ ≤ CTh
r‖u0‖Hρ

holds for all initial data u0 and for each tn = nk with 0 ≤ tn ≤ T,

and (h, k) ∈ Λ.
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Comments

• The initial function must be in Hρ, i.e. it must be smooth enough
that ∫ ∞

−∞

∣∣∣∣
∂j

∂x j
u0(x)

∣∣∣∣
2

dx < ∞, j = 0, 1, . . . , ρ

• If u0 6∈ Hρ, but u0 ∈ Hp for some p < ρ the convergence rate
will be less than r .

• The initial condition T u0 is not “natural,” in that we prefer to
use Eu0.

• The comparison of u with Sv is also somewhat artificial.

We need to consider the effects of using the Eu0 initial condition
and the comparison of u(tn, xm) with vnm...
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Truncation ICs  Evaluation ICs

If a function just has “a little” more smoothness than being in L2(R), then it can be
shown that the difference between the evaluation operator and the truncation operator
applied to that function is bounded by the level of smoothness... Formally:

Theorem

If ‖Dσu‖ < ∞ for σ > 1/2, then

‖Eu − T u‖h ≤ C(σ)hσ‖Dσu‖.

I.e. if the function has more than half a derivative in L2, then the evaluation operator
is well-defined, and the estimate in the theorem holds.

“Half a derivative” may seem strange in physical space, but it makes sense in the
Fourier domain, where the existence of any fractional derivative can be guaranteed by

u ∈ Hσ(R) ⇔

∫ ∞

−∞
|ξ|2σ |û(ξ)|2 dξ < ∞.

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Convergence Estimates for IVPs — (15/27)



Convergence Estimates for Initial Value Problems
Results...

Parabolic Equations

Theorem; Discussion
Cleaning up, and fixing some “problems”
Non-Smooth Initial Data

The Theorem, Now with Standard Initial Conditions

Theorem

If the IVP for a PDE of the form ût = q(ω)û, for which the IVP is

well-posed, is approximated by a stable one-step finite difference scheme

that is accurate of order [r , ρ] with ρ > 1/2, and r ≤ ρ, and the initial

function v0m = u0(mh), where u0 is in Hρ, then for each time T > 0
there exists a constant CT such that

‖Eu(tn, ◦)− vn‖h ≤ CTh
r‖u0‖Hρ

for each tn = nk with 0 ≤ tn ≤ T, and (h, k) ∈ Λ.

ρ > 1/2 in the order of accuracy is not really a restriction (since we
usually want r ≥ 2, and we must have ρ ≥ r ...

However, requiring u0 ∈ Hρ(R) with ρ ≥ 2, can be quite restrictive.
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Non-Smooth Initial Data

Clearly, “what happens when the initial data is not smooth
enough?” is the next question to ask...

We address this question for one-step schemes for first-order
equations satisfying |etq(ξ)| ≤ 1 and |g(hξ)| ≤ 1.

Now, we have ‖u0‖Hρ = ∞ (not enough smoothness), but for
some σ < ρ, ‖u0‖Hσ < ∞.

The answer is...
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Accuracy for Non-Smooth Initial Data

Theorem

If a stable one-step finite difference scheme is accurate of order

[r , ρ], with r ≤ ρ, the initial condition to the PDE is u0 with

‖Dσu0‖ < ∞ and σ < ρ, and the initial condition for the scheme

v0m is T u0, then the solution vn to the finite difference scheme

satisfies

‖u(tn, ◦)− Svn‖ ≤ C2h
β‖u0‖Hσ ,

where β = rσ/ρ. If σ > 1/2 and the initial function is either Eu0
or T u0, then in addition

‖Eun − vn‖h ≤ C1h
β‖u0‖Hσ .
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Examples: Non-Smooth Functions 1 of 3
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Figure: In the top-left panel we have
u1(x) = {1 if |x | < 1, 1

2
if |x | =

1, 0 otherwise}; in the top-right panel
we have u2(x) = {1 − |x | if |x | ≤
1, 0 otherwise}; and in the right panel
we have ∂xu2(x). The piecewise con-
stant function u1(x) ∈ Hσ1 for σ1 <
1/2; the piecewise linear u2(x) ∈ Hσ2

for σ2 < 3/2.
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have u3(x) = {cos2(πx

2
) if |x | ≤

1, 0 otherwise}; in the top-right we
have ∂xu3(x), and in the right panel
we have ∂xxu3(x). The piecewise
quadratic u3(x) ∈ Hσ3 for σ3 < 5/2.
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Examples: Non-Smooth Functions 3 of 3
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Figure: cos4(x) ∈ Hσ4 for
σ4 < 9/2.

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Convergence Estimates for IVPs — (21/27)



Convergence Estimates for Initial Value Problems
Results...

Parabolic Equations

Theorem; Discussion
Cleaning up, and fixing some “problems”
Non-Smooth Initial Data
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Figure: “Box” Initial condition, σ < 1/2. Observed convergence rate O
(
h1/4

)
...

⇒ FTBS is O
(
h1(1 + |ξ|)2

)
, since (r , σ, ρ) = (1, 1/2, 2) gives β = rσ/ρ = 1/4.
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Figure: “Tent” Initial condition, σ < 3/2. Observed convergence rate O
(
h3/4

)
...

⇒ FTBS is O
(
h1(1 + |ξ|)2

)
, since (r , σ, ρ) = (1, 3/2, 2) gives β = rσ/ρ = 3/4.
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Figure: “cos2(·)” Initial condition, σ < 5/2. Observed convergence rate O
(
h1
)
...

(r , σ, ρ) = (1, 5/2, 2).
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Parabolic Equations

The main “feature” of parabolic equations is that the initial data
gets smoothed very quickly as time increases. In this scenario it
seems unlikely that non-smooth initial conditions would seriously
degrade the rate of convergence of finite difference solutions to
solutions of the PDE.

The previous theorems are indeed much too pessimistic for
parabolic problems, as long as we use dissipative schemes.
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Convergence for Parabolic Equations

Theorem

If a one-step scheme that approximates an IVP for a parabolic

equation is accurate of order [r , ρ], for ρ ≥ r + 2, and dissipative of

order 2, with µ = kh−2 constant, then for each time T , there is a

constant CT such that for any t with nk = t ≤ T and (h, k) ∈ Λ,

‖u(t, ◦)− Svn‖ ≤ CT (1 + t−(ρ−1)/2) hr ‖u0‖,

and

‖Eun − vn‖h ≤ CT (1 + t−(ρ−1)/2) hr ‖u0‖.

Notice that the only requirement on u0 is that u0 ∈ L2(R), which
does not impose any “extra” smoothness on u0.
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Recommended Reading...

10.5: The Lax-Richtmyer Equivalence Theorem

“A consistent one-step scheme for a well-posed IVP for a PDE

is convergent if and only if it is stable.”

10.6: Analysis of Multistep Schemes

Extension of the ideas and results in this lecture to multistep
schemes. Initialization issues.

10.7: Convergence Estimates for Second Order Equations

Extension of the ideas and results in this lecture (and the
multistep results) to second-order equations.
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