Numerical Solutions to PDEs Lecture Notes #17 Convergence Estimates for Initial Value Problems

Peter Blomgren, {blomgren.peter@gmail.com}

Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research Center San Diego State University San Diego, CA 92182-7720

http://terminus.sdsu.edu/

Spring 2018

-(1/27)

(ロ) (部) (注) ()

Outline

Convergence Estimates for Initial Value Problems

- Introduction; Definitions; Tools; Extensions
- Old Accuracy and New Accuracy

2 Results...

- Theorem; Discussion
- Cleaning up, and fixing some "problems"
- Non-Smooth Initial Data

3 Parabolic Equations

Convergence

— (2/27)

< ∃⇒

Convergence Estimates for Initial Value Problems

We show some estimates for the convergence of solutions of finite difference schemes.

We are interested in the **rate**, $\mathcal{O}(h^r)$, of convergence of the scheme to the solution of the PDE.

Breaking News!!!

The regularity (smoothness) of the initial condition(s) impacts the convergence rate.

The discussion is restricted to one-step schemes for first-order (time) scalar equations with constant coefficients. Most of the results can (with "some work") be extended to multi-step schemes, systems, higher-order equations, and variable coefficient problems.

<ロ> (四) (四) (三) (三)

Introduction; Definitions; Tools; Extensions Old Accuracy and New Accuracy

Truncation: From Continuous Functions to the Grid

Definition (Truncation Operator, $\mathcal{T} : L^2(\mathbb{R}) \to L^2(h\mathbb{Z})$)

The truncation operator \mathcal{T} maps functions in $L^2(\mathbb{R})$ to functions on $L^2(h\mathbb{Z})$. Given $u \in L^2(\mathbb{R})$, we have

$$u(x)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}e^{ix\xi}\,\widehat{u}(\xi)\,d\xi,$$

and $\mathcal{T}u$ is defined as

$$\mathcal{T}u_m = rac{1}{\sqrt{2\pi}}\int_{-\pi/h}^{\pi/h} e^{imh\xi}\,\widehat{u}(\xi)\,d\xi,$$

for each grid point $mh \in h\mathbb{Z}$. Alternatively, the Fourier transform of $\mathcal{T}u$ is given by

$$\widehat{\mathcal{T}u}(\xi) = \widehat{u}(\xi), \text{ for } |\xi| \leq \frac{\pi}{h}.$$
 [Lowpass Filter]

— (4/27)

Introduction; Definitions; Tools; Extensions Old Accuracy and New Accuracy

Illustration: The Truncation Operator

Figure: A scaled version of Runge's function: $u(x) = \frac{1}{1+x^2}$ truncated to the grid $h\mathbb{Z}$, where h = 1.0. The largest mismatch between $u(x_m)$ and $\mathcal{T}u_m$ is at $x_m = 0$. **Notice** that truncation is not the same thing as point-wise evaluation!

イロト イヨト イヨト イヨト

Introduction; Definitions; Tools; Extensions Old Accuracy and New Accuracy

Interpolation: From the Grid to Continuous Functions

Definition (Interpolation Operator, $S : L^2(h\mathbb{Z}) \to L^2(\mathbb{R})$)

The interpolation operator S maps functions in $L^2(h\mathbb{Z})$ to functions on $L^2(\mathbb{R})$. Given $v \in L^2(h\mathbb{Z})$, we have

$$v_m = rac{1}{\sqrt{2\pi}} \int_{-\pi/h}^{\pi/h} \mathrm{e}^{\mathrm{i}mh\xi} \, \widehat{v}(\xi) \, d\xi,$$

and Sv(x) is defined as

$$\mathcal{S}\mathbf{v}(\mathbf{x}) = rac{1}{\sqrt{2\pi}} \int_{-\pi/h}^{\pi/h} e^{i\mathbf{x}\xi} \, \widehat{\mathbf{v}}(\xi) \, d\xi,$$

for each $x \in \mathbb{R}$. Alternatively, the Fourier transform of Sv(x) is given by

$$\widehat{Sv}(\xi) = \begin{cases} \widehat{v}(\xi) & \text{if } |\xi| \le \pi/h \\ 0 & \text{if } |\xi| > \pi/h. \end{cases}$$

Convergence Estimates for IVPs

— (6/27)

Convergence Estimates for Initial Value Problems Results... Parabolic Equations Introduction; Definitions; Tools; Extensions Old Accuracy and New Accuracy

Interpolation Operator — Implementation

Note that in order to implement the Interpolation Operator, we either need

- The analytic expression for $\hat{v}(\xi)$ (which is probably cheating?), or
- The expression from [LECTURE #4]: For a grid function v_m defined for all integers coordinates m, the Fourier transform is given by

$$\widehat{v}(\xi) = rac{1}{\sqrt{2\pi}} \sum_{m=-\infty}^{\infty} e^{-im\xi} v_m$$

(a) <</p>

— (7/27)

Introduction; Definitions; Tools; Extensions Old Accuracy and New Accuracy

イロト イポト イヨト イヨト

Illustration: The Interpolation Operator

Figure: The interpolation operator applied to two grid functions, on the left h = 1.0, and on the right h = 0.5.

— (8/27)

Introduction; Definitions; Tools; Extensions Old Accuracy and New Accuracy

イロト イポト イヨト イヨト

— (9/27)

Evaluation: From Continuous Functions to the Grid

For completeness, we also include the Evaluation operator in our discussion

Definition (Evaluation Operator, $\mathcal{E} : F(\mathbb{R}) \to F(h\mathbb{Z})$)

The evaluation operator \mathcal{E} maps functions on \mathbb{R} to functions on the grid $h\mathbb{Z}$. Given u(x), the evaluation operator is defined by

$$\mathcal{E}u = u(mh), m \in \mathbb{Z}.$$

Usually, we use $v_m^0 = \mathcal{E} u_0 = u_0(mh)$ as the initial conditions for our numerical schemes.

Convergence Estimates for Initial Value Problems Results... Parabolic Equations Introduction; Definitions; Tools; Extensions Old Accuracy and New Accuracy

Numerical Schemes for PDEs

We now consider finite difference schemes for PDEs in the form

$$\widehat{u}_t = q(\omega)\widehat{u}.$$

As initial data we take the values given by the truncation operator, i.e.

 $v_m^0 = [\mathcal{T} u_0]_m.$

Usually, this in not what we do in practice. However, this initial data gives the "cleanest" results.

Next, we redefine the order of accuracy in such a way that we can quantify how much smoothness we must require of the initial data in order for the **order of accuracy of the solutions** (global result) of the scheme to equal the **order of accuracy of the scheme** (local result, Taylor expansion).

-(10/27)

イロト イポト イヨト イヨト

イロン イヨン イヨン イヨン

Order of Accuracy

Old and New

INIVERSITY

-(11/27)

Old Defintion: Order of Accuracy

A scheme $P_{k,h}v = R_{k,h}f$ with $k = \Lambda(h)$ that is consistent with the differential equation Pu = f is accurate of order r if for any smooth function $\Phi(t, x)$,

$$P_{k,h}\Phi - R_{k,h}P\Phi = \mathcal{O}(h^{r}).$$

Definition: Order of Accuracy

A one-step scheme for a first-order system in the form $\widehat{u}_t = q(\omega)\widehat{u}$ with $k = \Lambda(h)$ is accurate of order $[\mathbf{r}, \rho]$ if there is a constant C such that for $|h\xi| \le \pi$ $\left| \frac{e^{kq(\xi)} - g(h\xi, k, h)}{L} \right| \le Ch^{\mathbf{r}}(1 + |\xi|)^{\rho}.$

Introduction; Definitions; Tools; Extensions Old Accuracy and New Accuracy

イロト イポト イラト イラト

Old Accuracy to New Accuracy...

Theorem

If a one-step finite difference scheme for a well-posed IVP is accurate of order r according to the "old definition" then there is a non-negative integer ρ such that the scheme is accurate of order $[r, \rho]$ according to the "new definition."

Examples: Applied to the one-way wave-equation —

Scheme	Old Accuracy	New Accuracy
Lax-Friedrichs	1	[1,2]
Lax-Wendroff	2	[2, 3]

-(12/27)

Convergence Estimates for Initial Value Problems Results... Parabolic Equations Non-Smooth Initial Data

Key Result: Numerical Solution ↔ Solution of PDE

Theorem

If the IVP for a PDE of the form $\hat{u}_t = q(\omega)\hat{u}$, for which the IVP is well-posed, is approximated by a stable one-step finite difference scheme that is accurate of order $[r, \rho]$ with $r \leq \rho$, and the initial function is $T u_0$, where u_0 is the initial function for the differential equation, then for each time T there exists a constant C_T such that

$$\|u(t_n,\circ)-\mathcal{S}v^n\|\leq C_Th^r\|u_0\|_{H^\rho}$$

holds for all initial data u_0 and for each $t_n = nk$ with $0 \le t_n \le T$, and $(h, k) \in \Lambda$.

-(13/27)

(ロ) (部) (注) ()

Convergence Estimates for Initial Value Problems	Theorem; Discussion
Results	Cleaning up, and fixing some "problems"
Parabolic Equations	Non-Smooth Initial Data

Comments

• The initial function must be in H^{ρ} , *i.e.* it must be smooth enough that

$$\int_{-\infty}^{\infty} \left| \frac{\partial^j}{\partial x^j} u_0(x) \right|^2 dx < \infty, \quad j = 0, 1, \dots, \rho$$

- If u₀ ∉ H^ρ, but u₀ ∈ H^p for some p < ρ the convergence rate will be less than r.
- The initial condition *Tu*₀ is not "natural," in that we prefer to use *Eu*₀.
- The comparison of u with Sv is also somewhat artificial.

We need to consider the effects of using the $\mathcal{E}u_0$ initial condition and the comparison of $u(t_n, x_m)$ with v_m^n ...

-(14/27)

() > () > () > ()

Convergence Estimates for Initial Value Problems Results... Parabolic Equations Non-Smooth Initial Data

Truncation ICs ~> Evaluation ICs

If a function just has "a little" more smoothness than being in $L^2(\mathbb{R})$, then it can be shown that the difference between the evaluation operator and the truncation operator applied to that function is bounded by the level of smoothness... Formally:

Theorem

If $||D^{\sigma}u|| < \infty$ for $\sigma > 1/2$, then

$$\|\mathcal{E}u-\mathcal{T}u\|_h\leq C(\sigma)h^{\sigma}\|D^{\sigma}u\|.$$

I.e. if the function has more than half a derivative in L_2 , then the evaluation operator is well-defined, and the estimate in the theorem holds.

"Half a derivative" may seem strange in physical space, but it makes sense in the Fourier domain, where the existence of any fractional derivative can be guaranteed by

$$u \in H^{\sigma}(\mathbb{R}) \ \Leftrightarrow \ \int_{-\infty}^{\infty} |\xi|^{2\sigma} \, |\widehat{u}(\xi)|^2 \, d\xi < \infty.$$

AN DIEGO STA

-(15/27)

イロト イポト イヨト イヨト

Convergence Estimates for Initial Value Problems Results... Parabolic Equations Non-Smooth Initial Data

The Theorem, Now with Standard Initial Conditions

Theorem

If the IVP for a PDE of the form $\hat{u}_t = q(\omega)\hat{u}$, for which the IVP is well-posed, is approximated by a stable one-step finite difference scheme that is accurate of order $[r, \rho]$ with $\rho > 1/2$, and $r \le \rho$, and the initial function $\mathbf{v}_m^0 = \mathbf{u}_0(\mathbf{mh})$, where u_0 is in \mathbf{H}^ρ , then for each time T > 0there exists a constant C_T such that

$$\|\mathcal{E}u(t_n,\circ)-v^n\|_h\leq C_Th^r\|u_0\|_{H^\rho}$$

for each $t_n = nk$ with $0 \le t_n \le T$, and $(h, k) \in \Lambda$.

 $\rho>1/2$ in the order of accuracy is not really a restriction (since we usually want $r\geq2,$ and we must have $\rho\geq r...$

However, requiring $u_0 \in H^{\rho}(\mathbb{R})$ with $\rho \geq 2$, can be quite restrictive.

-(16/27)

イロト イポト イヨト イヨト

Convergence Estimates for Initial Value Problems	Theorem; Discussion
Results	Cleaning up, and fixing some "problems"
Parabolic Equations	Non-Smooth Initial Data

Non-Smooth Initial Data

Clearly, "what happens when the initial data is not smooth enough?" is the next question to ask...

We address this question for one-step schemes for first-order equations satisfying $|e^{tq(\xi)}| \leq 1$ and $|g(h\xi)| \leq 1$.

Now, we have $\|u_0\|_{H^{\rho}} = \infty$ (not enough smoothness), but for some $\sigma < \rho$, $\|u_0\|_{H^{\sigma}} < \infty$.

The answer is...

-(17/27)

Convergence Estimates for Initial Value Problems Results... Parabolic Equations Non-Smooth Initial Data

Accuracy for Non-Smooth Initial Data

Theorem

If a stable one-step finite difference scheme is accurate of order $[r, \rho]$, with $r \leq \rho$, the initial condition to the PDE is u_0 with $\|D^{\sigma}u_0\| < \infty$ and $\sigma < \rho$, and the initial condition for the scheme v_m^0 is $\mathcal{T}u_0$, then the solution v^n to the finite difference scheme satisfies

$$\|u(t_n,\circ)-\mathcal{S}v^n\|\leq C_2h^{\beta}\|u_0\|_{H^{\sigma}},$$

where $\beta = r\sigma/\rho$. If $\sigma > 1/2$ and the initial function is either $\mathcal{E}u_0$ or $\mathcal{T}u_0$, then in addition

$$\|\mathcal{E}u^n-v^n\|_h\leq C_1h^\beta\|u_0\|_{H^{\sigma}}.$$

<ロ> (四) (四) (三) (三)

-(18/27)

Convergence Estimates for Initial Value Problems Results... Parabolic Equations Theorem; Discussion Cleaning up, and fixing some "problems" Non-Smooth Initial Data

Examples: Non-Smooth Functions

Peter Blomgren, (blomgren.peter@gmail.com)

Convergence Estimates for IVPs

1 of 3

AN DIEGO STAT

INIVERSITY

- (19/27)

Convergence Estimates for Initial Value Problems Theorem: Discussion Results... Parabolic Equations Non-Smooth Initial Data

Examples: Non-Smooth Functions

quadratic $u_3(x) \in H^{\sigma_3}$ for $\sigma_3 < 5/2$.

SAN DIEGO STATI UNIVERSITY

Convergence Estimates for Initial Value Problems Results... Parabolic Equations Non-Smooth Initial Data

Examples: Non-Smooth Functions

3 of 3

Convergence Estimates for Initial Value Problems	Theorem; Discussion
Results	Cleaning up, and fixing some "problems"
Parabolic Equations	Non-Smooth Initial Data

Forward-Time-Backward-Space

Figure: "Box" Initial condition, $\sigma < 1/2$. Observed convergence rate $\mathcal{O}(h^{1/4})...$ \Rightarrow FTBS is $\mathcal{O}(h^1(1+|\xi|)^2)$, since $(r,\sigma,\rho) = (1,1/2,2)$ gives $\beta = r\sigma/\rho = 1/4$.

AN DIEGO STAT

-(22/27)

イロト イヨト イヨト イヨト

Peter Blomgren, (blomgren.peter@gmail.com) Convergence Estimates for IVPs

Convergence Estimates for Initial Value Problems	Theorem; Discussion
Results	Cleaning up, and fixing some "problems"
Parabolic Equations	Non-Smooth Initial Data

Forward-Time-Backward-Space

Figure: "Tent" Initial condition, $\sigma < 3/2$. Observed convergence rate $\mathcal{O}(h^{3/4})$... \Rightarrow FTBS is $\mathcal{O}(h^1(1+|\xi|)^2)$, since $(r, \sigma, \rho) = (1, 3/2, 2)$ gives $\beta = r\sigma/\rho = 3/4$.

AN DIEGO STAT

-(23/27)

イロト イポト イヨト イヨト

Convergence Estimates for Initial Value Problems	Theorem; Discussion
Results	Cleaning up, and fixing some "problems"
Parabolic Equations	Non-Smooth Initial Data

Forward-Time-Backward-Space

AN DIEGO STAT

- (24/27)

イロト イヨト イヨト イヨト

Convergence Estimates for Initial Value Probler Results Parabolic Equatio	s Convergence
Parabolic Equations	

The main "feature" of parabolic equations is that the initial data gets smoothed very quickly as time increases. In this scenario it seems unlikely that non-smooth initial conditions would seriously degrade the rate of convergence of finite difference solutions to solutions of the PDE.

The previous theorems are indeed much too pessimistic for parabolic problems, as long as we use dissipative schemes.

-(25/27)

Convergence

Convergence for Parabolic Equations

Theorem

If a one-step scheme that approximates an IVP for a parabolic equation is accurate of order $[r, \rho]$, for $\rho \ge r + 2$, and dissipative of order 2, with $\mu = kh^{-2}$ constant, then for each time T, there is a constant C_T such that for any t with $nk = t \le T$ and $(h, k) \in \Lambda$,

$$\|u(t,\circ) - Sv^n\| \le C_T (1 + t^{-(\rho-1)/2}) h^r \|u_0\|_{2}$$

and

$$\|\mathcal{E}u^n - v^n\|_h \le C_T (1 + t^{-(\rho-1)/2}) h^r \|u_0\|.$$

Notice that the only requirement on u_0 is that $u_0 \in L^2(\mathbb{R})$, which does not impose any "extra" smoothness on u_0 .

10.5: The Lax-Richtmyer Equivalence Theorem

"A consistent one-step scheme for a well-posed IVP for a PDE is convergent if and only if it is stable."

10.6: Analysis of Multistep Schemes

Extension of the ideas and results in this lecture to multistep schemes. Initialization issues.

10.7: Convergence Estimates for Second Order Equations Extension of the ideas and results in this lecture (and the multistep results) to second-order equations.

・ロト ・ 同ト ・ ヨト ・ ヨト

-(27/27)