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Recap

A Quick Look in the Rear-View Mirror

In the last two lectures we covered [1] Analysis of Well-Posed and
Stable Problems and [2] Convergence Estimates for Initial Value
Problems.

Topic [1] is model-related and gave us a firmer theoretical foundation in
regards to what the potential usefulness of various PDE models in
relation to “well-behaved” physical phenomena. The key considerations
were continuous dependence on initial data, and robustness in terms of
perturbations in (or introduction of) lower order terms.

Topic [2] is numerics-related and gave us guidelines for how lack of
smoothness in the initial data may degrade the convergence rate of our
finite difference schemes. We have very clear results (theorems), for both
hyperbolic and parabolic problems, describing how much smoothness is
required to achieve the full convergence rate of the scheme, and exactly
to what degree non-smoothness degrades convergence.
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Introduction
Simplifications
Definitions

Looking Forward: Well-Posed and Stable IBVP

We now look at two topics which relate directly to the previous
two lectures, and provide the final piece to the puzzle describing
hyperbolic and parabolic problems in finite domains:

• the well-posedness of boundary conditions for PDEs
(model-centric), and

• the analysis of boundary conditions for finite difference
schemes (numerics-centric).

Our main theoretical tool/toy is the Laplace transform (which
can be viewed as a special case of the Fourier transform.)

This two-part lecture concludes our quick theoretical “detour,” which is meant to
serve two purposes: [a] to high-light the main theoretical results pertaining to our
computational goals; and [b] to give some indication of the areas of (more) theoretical
mathematics which are directly useful for computational sciences.
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Introduction: The IBVP PDE / Finite Difference Scheme

Pu = f

ΩΓ

We consider an initial-boundary value problem

Pu = f , or Ph,kv = Rh,k f ,

on some domain Ω ⊆ R
n with given initial conditions

u(0, x) = u0(x), or v0m = u0(xm),

and boundary (Γ = ∂Ω) conditions

Bu(t, x) = β(t, x), x ∈ Γ, or Bvnm = β(tn, xm), xm ∈ Γ.
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“Massaging” the Problem... 1 of 3

Simplification #1:

We assume that there is an extension of the model equation Pu = f

and the associated initial data u0(x) to all of Rn, so that the resulting
initial value problem is [1] Well-posed for the PDE; [2] Stable for the
FDS.

We let w denote the solution to the extended problem. By expressing
the solution to the original problem as u = w + u′, we realize that the
“missing part” u′ is given by the IBVP where f ≡ 0, and u0(x) ≡ 0,
i.e. the only non-zero data determining u′ is the boundary conditions
Bu′(t, x) = β(t, x)

Simplification #2:

We extend the time-interval from (0,∞) to (−∞,∞), which will simplify
the analysis...
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“Massaging” the Problem... 2 of 3

Simplification #3:

Well-posedness of boundary conditions of PDEs is essentially a local
property — we need only consider the PDE and BC at each boundary
point (separately), and if the problem is well-posed at each point, the
global problem is well-posed.

This allows us to only consider the frozen coefficient problems —
when Γ is smooth enough the analysis of the IBVP at the boundary
point x0 at time t0 is reduced to considering the PDE with coefficients
fixed at (t0, x0), and Ω replaced by half-space (illustrated on slide 8).
We end up with a constant-coefficient problem on a half-space, which
may be a tremendous simplification over a variable coefficient problem
on a complicated domain.

This simplification extends to some degree to finite difference schemes;
however, the theory is not as complete as it is for PDEs.
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“Massaging” the Problem... 3 of 3

Pu = f

ΩΓ

Figure: Illustration of the extension of Ω to the appropriate half-space, formed by
the tangent-plane at x0 ∈ Γ, and the interior normal n̄ at x0.
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The Laplace Transform Strikwerda’s Version

There are several ways to define the Laplace transform. Here, we use
Strikwerda’s choice:

Definition (The Laplace Transform)

The Laplace transform ũ(s) is equal to the Fourier transform of e−ηtu(t)
with the dual variable τ , i.e.

ũ(s) =
1√
2π

∫ ∞

−∞
e−(η+iτ)t u(t) dt

where s = η + iτ .

Most definitions of the Laplace transform do not include 1√
2π

(we include

it for symmetry with the Fourier transform); and often you see it
expressed only at τ ≡ 0, and for functions u(t) for which u(t) ≡ 0 for
t < 0.
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The Laplace Inversion Formula

Based on what we know about the Fourier inversion formula, and
variable substitution we get

u(t) =
1√
2π

∫ ∞

−∞
e(η+iτ)t ũ(n + iτ) dτ =

1

i
√
2π

∫ η+i∞

η−i∞
est ũ(s) ds

This latter integral is known as the Bromwich integral or the
Fourier-Mellin integral. The path of integration is a vertical
contour in the complex plane chosen so that all singularities of
u(s) are to the left of it.

Since we are interested in positive time, we are always going to
have η > 0.
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The Discrete Laplace Transform See also “Z -transform”

Definition (The Discrete Laplace Transform)

The Laplace transform of a discrete function vn
m on a grid with

time-spacing k is defined by

ṽ(s) =
k√
2π

∞∑

n=−∞
e−(η+iτ)nk vn,

With z = e(η+iτ)k and a slight abuse of notation [n both a power and
time-superscript], we have

ṽ(z) =
k√
2π

∞∑

n=−∞
z−nvn,

with the inversion formula

vn =
1

2π

∫ π/k

−π/k

esnk ṽ(s) dτ =
1

ik
√
2π

∮

|z|=eηk

z (n−1) ṽ(z) dz .
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The Discrete Laplace Transform: Notes

The condition Re(η) ≥ 0 is equivalent to |z | ≥ 1.

The contour/circle integral
∮

|z|=eηk
z(n−1) ṽ(z) dz

is the integral in the complex plan over the circle with radius eηk .
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Energy Estimates — Parseval — Fourier — Laplace

From Parseval’s relation for the Fourier transform, we have

‖u‖2η =

∫ ∞

−∞
e−2ηt |u(t)|2 dt =

∫ ∞

−∞
|ũ(η + iτ)|2 dτ.

‖v‖2η,k = k

∞∑

n=−∞

e−2ηkn |vn|2 =
∫ π/k

−π/k
|ṽ(η + iτ)|2 dτ

≡ k

∞∑

n=−∞

z−2n |vn|2 = 1

k

∮

|z|=eηk
|ṽ(z)|2 dθ.

where z = eηke iθ, i.e. θ = τk .
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Boundary “Energy” and Well-Posedness

For both time and space dimensions we can define

|||u|||2η =

∫ ∞

−∞

∫ ∞

0

∫ ∞

−∞
e−2ηt |u(t, x , y)|2 dt dx dy

=

∫ ∞

−∞

∫ ∞

0

∫ ∞

−∞
|û(η + iτ, x , ωy )|2 dτ dx dωy ,

and for norms over the boundary we use

|β|2η =

∫ ∞

−∞

∫ ∞

−∞
e−2ηt |β(t, y)|2 dt dy

=

∫ ∞

−∞

∫ ∞

−∞
|β̂(η + iτ, ω)|2 dτ dω.

We express well-posedness for IBVPs

|||u|||2η + |u|2η ≤ C (η)
(
|β|2η + |||f |||2η + ‖u0‖2

)
.
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Boundary Conditions for the Leapfrog Scheme 1 of 14

With the theoretical machinery in place, we now analyze boundary
conditions for the leapfrog scheme for ut − aux = 0, a > 0, i.e.

vn+1
m = vn−1

m + aλ(vnm+1 − vnm−1),

we consider the spatial region R
+ = [0,∞), for t ∈ (−∞,∞), we

consider the following numerical boundary conditions at x0:

vn+1
0 = vn+1

1 + βn+1 (11.2.2a)

vn+1
0 = vn1 + βn+1 (11.2.2b)

vn+1
0 = vn−1

0 + 2aλ(vn1 − vn0 ) + βn+1 (11.2.2c)

vn+1
0 = vn0 + aλ(vn1 − vn0 ) + βn+1 (11.2.2d)
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Boundary Conditions for the Leapfrog Scheme 2 of 14

Replacing vn
m  znκm in the scheme, gives us (after division by znκm)

z − 1

z
= aλ

(
κ− 1

κ

)
,

this equation has two roots κ±(z) which are continuous functions of z ;
when κ+ 6= κ− the general solution is in the form

ṽm = Aκ−(z)
m + Bκ+(z)

m.

Result #1: When |z | > 1, we have |κ−(z)| < 1 and |κ+(z)| > 1. Since
we are only interested in the finite-energy solutions in L2(hZ+), the
general form of ṽm for |z | > 1 is

ṽm = A(z)κ−(z)
m;

A(z) is determined by the transform of the boundary function, β̃(z).
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Boundary Conditions for the Leapfrog Scheme 3 of 14

Using this representation in the boundary expressions (11.2.2a–11.2.2d),
we get

A(z) [1− κ−(z)] = β̃(z) (11.2.6a)

A(z) [z − κ−(z)] = z β̃(z) (11.2.6b)

A(z)
[
z − z−1 − 2aλ [κ−(z)− 1]

]
= z β̃(z) (11.2.6c)

A(z) [z − 1− aλ [κ−(z)− 1]] = z β̃(z) (11.2.6d)

The norm of ṽm in L2(hZ+) is given by

‖ṽ(z)‖2 = h

∞∑

m=0

|ṽm|2 = h|A(z)|2
∞∑

m=0

|κ−(z)|2m =
h |A(z)|2

1− |κ−(z)|2
,

and, with s = η + iτ , in terms of the function vn
m

‖v‖2η,h =

∫ π/k

−π/k

h |A(esk)|2
1− |κ−(esk)|2

dτ.
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Boundary Conditions for the Leapfrog Scheme 4 of 14

In order to get an estimate of the form ‖v‖2η,h ≤ C |β|2η,h, we substitute
the expressions for A(z). E.g. for boundary conditions (11.2.2a) and
(11.2.2b), we have from (11.2.6a) and (11.2.6b)

‖v‖2η,h =

∫ π/k

−π/k

|β̃(esk)|2
|1− κ−(esk)|2

h

1− |κ−(esk)|2
dτ (11.2.8a)

‖v‖2η,h =

∫ π/k

−π/k

|z |2 |β̃(esk)|2
|esk − κ−(esk)|2

h

1− |κ−(esk)|2
dτ (11.2.8b)

For (11.2.8a) we must find a lower bound on |1− κ−|, and for (11.2.8b)
we must find a lower bound on |esk − κ−(esk)|.
Since we choose η > 0, we have |z | > 1, and |κ−| < 1, therefore neither
|1− κ−| nor |z − κ−| is zero, but, as k → 0 (|z | → 1). Hence we analyze
the behavior of κ−(z) for |z | = 1, the behavior for |z | > 1 can then be
determined by, e.g. Taylor series.
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Boundary Conditions for the Leapfrog Scheme 5 of 14

The analysis reduces to checking for non-trivial solutions of the form
ṽm = A(z)κ−(z)m, which solve the homogeneous boundary conditions;
we must check if there is a κ−(z) such that

A(z)[1− κz ] = 0 (11.2.9a)

A(z)[z − κz ] = 0 (11.2.9b)

for the boundary conditions (11.2.2a) and (11.2.2b) respectively.

To analyze boundary conditions (11.2.2a)–(11.2.2d), we first set κ = 1 in
z − 1

z
= aλ

(
κ− 1

κ

)
, and notice that z = ±1 are roots, and conversely if

z = ±1, then κ = ±1 are roots. By expansion z = ±(1 + ǫ), and
κ = (1 + δ) it is quite straight forward to identify which root (κ− or κ+)
approaches ±1 in each case. See figure on slide 20.
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Boundary Conditions for the Leapfrog Scheme 6 of 14

κ+ κ−

z −> (−1)

κ+κ−

z −> (+1)

Figure: The behavior of the roots κ−(z) and κ+(z) as [Left Panel] z → −1,
and [Right Panel] z → +1.

We show the analysis for z → −1 (κ− → 1), which ties in directly to an
expression for the lower bound of 1− κ−...
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Boundary Conditions for the Leapfrog Scheme 7 of 14

We set z = −(1 + ǫ), and κ = 1 + δ, and get

z − z−1 = −2ǫ+O
(
ǫ2
)

aλ(κ− κ−1) = 2aλδ +O
(
δ2
)

Since aλ > 0, ǫ > 0 ⇒ δ < 0, thus κ−(−1) = 1.

For z ≈ −1, (1− κ−) ∼ −δ = O (ǫ) = O (|z | − 1) = O (kη),
hence∗

|1− κ−(z)| ≥ cηk.

Unfortunately, this is a best possible estimate for the
denominator, only achieved on the real line (at τ = ±π/k). We
will not be able to use this to get a stability bound for boundary
condition (11.2.2a).
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Boundary Conditions for the Leapfrog Scheme 8 of 14

For boundary condition (11.2.2b) we need a lower bound for
|z − κ−(z)|: to see if this quantity can be small, we set κ = z and
get

z − 1

z
= aλ

(
z − 1

z

)
;

since aλ < 1 (stability of the scheme), this is only satisfied when
z = ±1, but from the previous analysis κ−(±1) = ∓1, so
independent of k

|z− κ−(z)| ≥ c,

for |z | ≥ 1.
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Boundary Conditions for the Leapfrog Scheme 9 of 14

We are now well on our way of getting estimates for the boundary
conditions (11.2.2a)/(11.2.8a) and (11.2.2b)/(11.2.8b)

‖v‖2η,h ≤ 1

c2k2

∫ π/k

−π/k

|β|2h
1− |κ−|2

dτ (11.2.11a)

‖v‖2η,h ≤ 1

c2

∫ π/k

−π/k

|β|2h
1− |κ−|2

dτ (11.2.11b)

with the caveat that (11.2.11a) is a best-case estimate.

It now remains to estimate the term

h

1− |κ−(z)|2
.
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Boundary Conditions for the Leapfrog Scheme 10 of 14

We set z = esk = e iτ (1 + ηk +O
(
η2k2

)
), and consider two cases: Either

|κ−(z)| = 1 for kη = 0, or |κ−(z)| < 1 for kη = 0. In the first case
κ−(z) = e iϕ(1− δ), and from

z − 1

z
= aλ

(
κ− 1

κ

)
,

we get

2i sin τ + 2kη cos τ +O
(
k2η2

)
= aλ

(
2i sinϕ+ 2δ cosϕ+O

(
δ2
))

,

so that sin τ = aλ sinϕ, and | sin τ | ≤ |aλ|, and | cos τ | ≥
√

1− (aλ)2.

Thus,

δ =
cos τ

cosϕ
kη +O

(
k2η2

)
≥

√
1− (aλ)2 kη +O

(
k2η2

)
.
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Boundary Conditions for the Leapfrog Scheme 11 of 14

For | sin τ | > aλ, |κ−(z)| < 1. Therefore, for η > 0 and k ∈ (0, k0(η)],
we have 1− |k−(z)| ≥ c0kη, and

h

1− |κ−(z)|2
≤ h

1− |κ−(z)|
≤ c

η
,

and now we have,

‖v‖2η,h ≤ c∗1
k2η

|β|2η,h (11.2.14a)

‖v‖2η,h ≤ c∗2
η
|β|2η,h (11.2.14b)

where, again (11.2.14a) is a best-case estimate, so boundary condition
(11.2.2a) vn+1

0 = vn+1
1 + βn+1 is unstable.

(11.2.14b) shows that boundary condition (11.2.2b) vn+1
0 = vn

1 + βn+1 is
stable.
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Boundary Conditions for the Leapfrog Scheme 12 of 14

We have 2 more boundary conditions to analyze

(11.2.2c) vn+1
0 = vn−1

0 + 2aλ(vn1 − vn0 ) + βn+1

(11.2.2d) vn+1
0 = vn0 + aλ(vn1 − vn0 ) + βn+1

(11.2.2c) gives the equation

z − z−1 = 2aλ(κ− − 1), (11.2.9c)

as the equation to be solved if there is to be a non-trivial solution
to the homogeneous BVP; and (11.2.2d) gives the equation

z − 1 = 2aλ(κ− − 1). (11.2.9d)
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Using the relation z − z−1 = aλ
(
κ− κ−1

)
and (11.2.9c) gives us

2aλ(κ− − 1) = aλ
(
κ− κ−1

)

which has κ− = 1 as the only solution (corresponding to z = −1); since
there is a solution, boundary condition (11.2.2c)
vn+1
0 = vn−1

0 + 2aλ(vn
1 − vn

0 ) + βn+1 is unstable.

Similarly dividing the relation (top of slide) by (11.2.9d) gives us

z − z−1

z − 1
=

z+ 1

z
=

aλ(κ− − κ−1
− )

aλ(κ− − 1)
=

κ− + 1

κ−

implying that z = κ−, however the previous analysis showed that this is
not true; thus there is no solution to (11.2.9d), and therefore boundary
condition (11.2.2d) vn+1

0 = vn
0 + aλ(vn

1 − vn
0 ) + βn+1 is stable.
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Boundary Conditions for the Leapfrog Scheme 14 of 14

vn+1
0 = vn+1

1 + βn+1 unstable

vn+1
0 = vn1 + βn+1 stable

vn+1
0 = vn−1

0 + 2aλ(vn1 − vn0 ) + βn+1 unstable

vn+1
0 = vn0 + aλ(vn1 − vn0 ) + βn+1 stable

Movies:
leapfrog bc 1122a.mpg, leapfrog bc 1122b.mpg,

leapfrog bc 1122c.mpg, leapfrog bc 1122d.mpg

Next time, we state some general results for the stability of

boundary conditions...
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