
Numerical Solutions to PDEs
Lecture Notes #19 — Well-Posed and Stable Initial-Boundary

Value Problems, Part 2

Peter Blomgren,
〈blomgren.peter@gmail.com〉
Department of Mathematics and Statistics

Dynamical Systems Group
Computational Sciences Research Center

San Diego State University
San Diego, CA 92182-7720

http://terminus.sdsu.edu/

Spring 2018

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Well-Posed and Stable IBVPs — (1/25)

Outline

1 Introduction
Recap

2 Boundary Conditions: General Analysis
The Resolvent Equation
Characterizing Solutions
Stability of the Boundary Conditions

3 Examples
Crank-Nicolson for the One-Way Wave-Equation
Crank-Nicolson for the Heat Equation

4 Well-Posedness of the IBVP
General Solution and Boundary Condition
Admissible Solutions to the PDE
Well-Posed and Weakly Well-Posed IBVP

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Well-Posed and Stable IBVPs — (2/25)

Introduction Recap

Introduction

In the previous lecture we examined the well-posedness of a IBVP
(on the PDE side), and the stability of the IBVP solved using the
leapfrog scheme (on the finite difference side).

Our fundamental tool in this analysis is the Laplace transform

ũ(s) =
1√
2π

∫ ∞

−∞
e−(η+iτ)t u(t) dt,

where s = η + iτ .

As we saw in the leapfrog case, the analysis gets “a little” involved.

This time we state some general results for the stability analysis of
boundary conditions and the well-posedness of the IBVP.
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Boundary Conditions: General Analysis

We look the general method for checking the stability of boundary
conditions for finite difference schemes.

We consider a scheme defined for all time and for x ∈ R+, with the
boundary at x = 0:

Pk,hv
n
m = Rk,hf

n
m,

we assume the scheme is stable for the IVP and consistent with a
hyperbolic equation (or system of equations, vn

m is a d-vector); further we
assume that no lower order terms are present (this simplifies the
analysis). The boundary conditions are given by

Bk,hv
n
0 = β(tn),

For stability we must derive an estimate of the form

η|||v |||2η,h + |v |2η,h ≤ C
(
η−1|||f |||2η,h + |β|2η,h + ‖v0‖2h

)
.
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The Resolvent Equation The Symbols Return

We Laplace (“z”) transform Pk,hv
n
m = 0 in the t-direction (vn

m  znṽm)
and get, the resolvent equation

P̃k,h(z)ṽm(z) = 0,

the general solution is of the form

ṽm(z) = A(z)κm, (1)

which gives us P̃k,h(z)A(z)κ
m = k−1p̃(z , κ)A(z)κm, where the matrix

function p̃(z , κ) is related to the symbol of Pk,h, and the amplification
polynomial by

p̃(esk , e ihξ) = kpk,h(s, ξ), p̃(g , e iθ) = Φ(g , θ).

Solutions of the form (1) exist only if det(p̃(z, κ)) = 0, we view this as
an equation for κ as a function of z .
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Behavior of the Roots κ(z)...

Theorem

If the scheme Pk,hv
n
m = Rk,hf

n
m is stable, then there are integers

K− and K+ such that the roots κ(z), of det(p̃(z , κ)) = 0 separate
into two groups, one with K− roots and one with K+ roots. The
group denoted by κ−,ν(z) satisfy

|κ−,ν(z)| < 1 for |z | > 1, and ν = 1, . . . ,K−

and the group denoted by κ+,ν(z) satisfy

|κ+,ν(z)| > 1 for |z | > 1, and ν = 1, . . . ,K+
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Behavior of the Roots κ(z)...

Lemma

If κ(z) is a root of det(p̃(z , κ)) = 0 with |κ(z)| = 1 for |z | = 1,
then there is a constant C such that

||κ| − 1| > C (|z | − 1)

whenever |z | > 1.
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Representation of the Solution Characterization

By the previous theorem, K− is independent of z , and the
general solution in L2(R+) is given by

ṽm(z) =
K−∑

ν=1

αν(z)Aν(z)κ
m
−,ν .

Definition (Admissible Solutions)

An admissible solution to the resolvent equation is a solution that
is in L2(hZ+) in the case when |z | > 1, and when |z | = 1 an
admissible solution is the limit of admissible solutions with |z | > 1,
i.e.

v(z) = lim
ǫց0

v(z(1 + ǫ))

where v(z(1 + ǫ)) ∈ L2(hZ+) ∀ǫ > 0.
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The Coefficients αν(z) and Stability...

As in the Leapfrog-case, the coefficients αν(z) are determined by
applying the Laplace transform to the boundary conditions

B̃ṽ0(z) = β̃(z).

The solution can be bounded independently of z only if there are
no non-trivial solutions to the homogeneous equation for |z | ≥ 1.

Thus checking for stability of the boundary conditions reduces to
checking that there are no admissible solutions to the resolvent
equation that also satisfy

B̃ṽ0(z) = 0.

We summarize this in a theorem:
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Stability of the Boundary Conditions

Theorem (Stability of the Boundary Conditions)

The IBVP for the stable scheme Pk,hv
n
m = Rk,hf

n
m for a hyperbolic

equation with boundary conditions Bk,hv
n
0 = β(tn) is stable if and only if

there are no non-trivial solutions of the resolvent equation,
P̃k,h(z)ṽm(z) = 0, that satisfy the homogeneous boundary conditions

B̃ṽ0(z) = 0, for |z| ≥ 1.

Theorem (Stability of the Boundary Conditions)

If the IBVP for the stable scheme Pk,hv
n
m = Rk,hf

n
m with boundary

conditions Bk,hv
n
0 = β(tn) approximates a well-posed IBVP for a

parabolic PDE and the number of boundary conditions required for the
scheme is equal to the number required by the PDE, then the IBVP is
stable if and only if there are no admissible solutions of the resolvent
equation that satisfy the homogeneous boundary conditions for |z| ≥ 1,
except for z = 1.
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Example #1: Crank-Nicolson for the One-Way Wave-Equation

We consider the Crank-Nicolson scheme applied to the one-way
wave-equation ut + aux = 0

−aλ

4
vn+1
m+1 + vn+1

m +
aλ

4
vn+1
m−1 =

aλ

4
vn
m+1 + vn

m − aλ

4
vn
m−1,

with quasi-characteristic extrapolation boundary condition

vn+1
0 = vn

1 .

Setting det(p̃(z , κ)) = 0, gives us

z − 1

z + 1
=

aλ

4

(
κ− 1

κ

)
,

clearly if κ is a root, then so is −κ−1 so that the roots |κ−(z)| < 1 and
|κ+(z)| > 1 for |z | > 1, remain separated (as stated in the theorem on
slide 6, with K− = K+ = 1).
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Example #1: CN for the One-Way Wave-Equation 2 of 4

The boundary condition resulting from the substitution ṽm = κm
−

(quasi-characteristic extrapolation) yields the equation

z − κ−(z) = 0,

since |z | ≥ 1, and |κ−(z)| ≤ 1, the only possible solution is
z = κ−(z) = e iθ, for some θ ∈ R. Thus we must have

e iθ − 1

e iθ + 1
=

aλ

4

(
e iθ − e−iθ

)
,

or equivalently

tan

(
θ

2

)
=

aλ

2
sin(θ) = aλ sin

(
θ

2

)
cos

(
θ

2

)
,

so that, either

sin

(
θ

2

)
= 0, or cos2

(
θ

2

)
=

1

aλ
.
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Example #1: CN for the One-Way Wave-Equation 3 of 4

Case #1, sin
(
θ
2

)
= 0: This is equivalent to κ−(1) = 1, however as in

the case of the leapfrog scheme lim
ǫց0

[κ(1 + ǫ)] ց 1 i.e. κ+(1) = 1, thus

this case does not pose a difficulty.

Case #2, cos2
(
θ
2

)
= 1

aλ :
(a) If aλ < 1, this does not have a solution.

(b) If aλ = 1, cos2
(
θ
2

)
= 1 only for θ = 0, but as in case #1 this does

not yield an admissible solution.

(c) If aλ > 1, then we set

z = e iθ
1 + ǫ

1− ǫ
, and κ = e iθ(1 + δ)

and plug into
z − 1

z + 1
=

aλ

4

(
κ− 1

κ

)

With a little bit of help from Taylor, we get...
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Example #1: CN for the One-Way Wave-Equation 4 of 4

...to first order in ǫ and δ

ǫ

(
1 + tan2

(
θ

2

))
=

δaλ

2
cos(θ)

so that if (c-i) cos(θ) > 0, then κ+ = z , and if (c-ii) cos(θ) < 0, then
κ− = z and the boundary condition is unstable. cos(θ) < 0 ⇔
cos2

(
θ
2

)
< 1

2 , and therefore the scheme is unstable for aλ > 2.

Finally, for (d) aλ = 2 both κ− = κ+ = z = ±i , and thus this case is
also unstable. We conclude:

Stability Condition for the Boundary Condition

Case #1 and Case #2a–d show that the boundary condition is stable
when aλ < 2.

Movies:
kappa minus alambda 0.5.mpg, kappa minus alambda 1.5.mpg,

kappa minus alambda 2.0.mpg, kappa minus alambda 2.5.mpg.
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Note: cos(θ) < 0 ⇔ cos2
(
θ
2

)
< 1

2

Figure: cos(θ) < 0 ⇔ θ ∈ (π/2, 3π/2) ⇔ θ/2 ∈ (π/4, 3π/4) ⇔
cos

(
θ
2

)
∈ (−1/

√
2, 1/

√
2) ⇔ cos2

(
θ
2

)
∈ [0, 1/2).
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Example #2: Crank-Nicolson for the Heat Equation 1 of 2

Consider the heat equation ut = buxx on R+ with Neumann
boundary condition ux = 0 (no-flux) at x = 0, and the application
of the Crank-Nicolson scheme

vn+1
m − vnm =

bµ

2
δ2(vn+1

m + vnm),

and the numerical implementation of the boundary condition

3vn+1
0 − 4vn+1

1 + vn+1
2

2h
= 0.

The equation relating κ and z is

z − 1

z + 1
= bµ(κ− 2 + κ−1),

and the boundary condition gives

0 = 3− 4κ− + κ2− = (1− κ−)(3− κ−).
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Example #2: Crank-Nicolson for the Heat Equation 2 of 2

The boundary condition (1− κ−)(3− κ−) = 0 gives us κ− = 1 as the
only possibility with |κ−| ≤ 1. Plugging this into

z − 1

z + 1
= bµ( κ︸︷︷︸

1

−2 + κ−1
︸︷︷︸

1

) = 0

gives us z = 1.

This corresponds to the exception in the “parabolic theorem” (slide 10),
and therefore the Finite Difference Scheme

vn+1
m − vn

m =
bµ

2
δ2(vn+1

m + vn
m),

with boundary condition

3vn+1
0 − 4vn+1

1 + vn+1
2

2h
= 0,

is stable.
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Well-Posedness of the IBVP

The remaining piece of the puzzle is a method for checking the
well-posedness of the IBVP, as required in the theorem on slide 10.

On the domain Ω = {(t, x , y) : t, y ∈ R, x ∈ R+}, with boundary
at x = 0, we consider the parabolic equation + boundary
conditions

ut = b(uxx + uyy ) + f (t, x , y), Re(b) > 0

ux + αuy = β(t, y).

Fourier-transforming in y , and Laplace-transforming in t gives us

ûxx = (b−1s + ω2)û − b−1 f̂ (s, x , ω)

ûx + iωαû = β̂(s, ω).
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General Solution and Boundary Condition

In the transform domain the general solution is given by

û(s, x , ω) = û0(s, ω)e
−κx +

1

2κb

∫ ∞

x

e(x−z)κ f̂ (s, z , ω) dz

+
1

2κb

∫ x

0

e−(x−z)κ f̂ (s, z , ω) dz ,

where κ =
√
b−1s + ω2, and Re(κ) > 0, this gives the following

characterization of the boundary condition

(−κ + iαω)

[
û0(s, ω)−

1

2κ

∫ ∞

0

e−zκ f̂ (s, z , ω) dz

]
= β̂(s, ω),

this is a linear equation for û0, which can only be solved if
(−κ+ iαω) 6= 0, further if | − κ+ iαω| ≥ δ > 0, we can get a uniform
estimate for û0.
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Condition for Well-Posedness

−κ+ iαω = 0 occurs only when

√
b−1s + ω2 = iαω ⇔ s = −b(α2 + 1)ω2

With Re(s) ≥ 0 and ω real, this can only be satisfied if
Re

[
b(α2 + 1)

]
≤ 0, thus the requirement for the boundary condition

ux + αuy = β(t, y) to be well-posed for equation
ut = b(uxx + uyy ) + f (t, x , y), Re(b) > 0 is

Re
[
b(α2 + 1)

]
> 0.

Where

ut = b(uxx + uyy ) + f (t, x , y), Re(b) > 0

ux + αuy = β(t, y).
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Observation and Generalization

The forcing function f (t, x , y) does not impact the well-posedness
of the boundary condition.

In general, for a PDE of the form

ut = P(∂x , ∂y )u + f (t, x , y)

Bu = β(t, y)

where x ∈ R+, y ∈ Rd , the resolvent equation is an ODE for û

[s − P(∂x , iω)]û = 0, Re(s) > 0

Bû = 0
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Admissible Solutions to the PDE

Definition (Admissible Solution)

An admissible solution to the resolvent equation

[s − P(∂x , iω)]û = 0,

is a solution that is in L2(R+) as a function of x when Re(s) > 0,
and, when Re(s) = 0 an admissible solution is the limit of
admissible solutions with Re(s) > 0 positive, i.e.

û(s, x , ω) = lim
ǫց0

û(s + ǫ, x , ω),

where û(s + ǫ, x , ω) is an admissible solution for each ǫ > 0.
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Well-Posed IBVP

Theorem (Well-Posed IBVP)

The IBVP for ut = P(∂x , ∂y )u + f (t, x , y) with boundary condition
Bu = β(t, y) is well-posed if and only if there are no non-trivial
admissible solutions to the resolvent equation [s − P(∂x , iω)]û = 0
that satisfy the homogeneous boundary conditions Bû = 0.

This theorem characterizes the strongest notion of a well-posed
IBVP, involving estimates of the solution in the interior of the
domain, as well as L2 estimates of the solution on the boundary, in
terms of the L2-norm of the boundary data.

A slightly relaxed version of the theorem turns out to be useful in
applications (e.g. to CFD applications such as studying shallow
water equations around a constant flow):
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“Relaxed” Well-Posed IBVP: Weakly Well-Posed IBVP

Theorem (Weakly Well-Posed IBVP)

If a nontrivial admissible solution û(s0, x , ω0) to the hyperbolic
system [s − P(∂x , iω)]û = 0 with Re(s0) = 0, and |s0|2 + |ω0|2 6= 0
satisfies the homogeneous boundary condition Bû = 0, but there
exists a constant c such that

‖Bû(s0 + ǫ, 0, ω0)‖ ≥ c
√
ǫ‖û(s0, 0, ω0)‖

for ǫ > 0 sufficiently small and there are no non-trivial solutions
with Re(s) > 0 satisfying the homogeneous boundary conditions,
then the IBVP is weakly well-posed.
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Summarizing

[Lecture #18-19] We now have the tools to completely determined the
well-posedness (or weak well-posedness) of an IBVP (on the model /
PDE level), by establishing the non-existence of solutions to the resolvent
equation, which we derive using Laplace-Fourier transforms.

On the computational (finite difference) level, the determination of
stability for the boundary conditions follow a very similar pattern:
discrete Laplace-Fourier  “discrete” resolvent equation...

[Lecture #17] We also have a quite complete picture of how the the
smoothness of initial conditions affect the convergence rate of our
schemes to the solution of the PDE.

[Lecture #16] In addition we have a clear characterization of well-posedness
for initial value problems.

In the following lectures we expand our “problem universe” to include
elliptic problems.
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