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Introduction

The model equation for Elliptic problems is Poisson’s equation
(see also: Poisson-Boltzmann)

∆u = ∇2u = uxx + uyy = f (x , y) (x , y) ∈ Ω

αu + β∇u · n̄ = g(x , y) (x , y) ∈ Γ

it describes e.g.

the electrostatic potentials in the presence of charges,

the electrochemical potential of ions in a diffuse layer,

the potential energy in gravitational fields,

the steady-state solution of the heat equation, with
sources/sinks in Ω and specified boundary conditions.
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Introduction

Note that in contrast with hyperbolic and parabolic problems,
elliptic problems are not time-dependent. The special case
f (x , y) ≡ 0, e.g.

∆u = 0 (x , y) ∈ Ω

αu + β∇u · n̄ = g(x , y) (x , y) ∈ Γ

is known as Laplace’s equation.

The solutions of Laplace’s equation are the harmonic functions∗, which
appear in e.g. electromagnetism, astronomy, and fluid dynamics; they
describe the behavior of electric, gravitational, and fluid potentials. In
the study of heat conduction, the Laplace equation is the steady-state
sourceless heat equation.
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More Elliptic Problems

The Helmholtz equation

∇2u(x , y) +
[ω
c

]2
u(x , y) = 0,

describes e.g. the vibrations of a thin plate.

The Biharmonic equation

∇4u = ∆2u = uxxxx + 2uxxyy + uyyyy = f (x , y),

is used to e.g. model the deflections arising in two dimensional
rectangular orthotropic symmetric laminate plates.

(Other orthotropic materials/problems: wood, sheet metal,
electrical conduction, flow in porous media...)
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More Elliptic Problems

The steady Stokes equations

∇2u − px = f1
∇2v − py = f2
ux + vy = 0

describe the steady motion of an incompressible highly viscous
fluid.
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Laplace’s Equation... and Boundary Conditions

The solutions to Laplace’s equation ∇2u = 0 are called
harmonic functions, and the 2D-version of Laplace’s equation is
strongly connected with complex analysis, where the
Cauchy-Riemann equations for the harmonic function
f (x + iy) = u(x , y) + iv(x , y) are

ux − vy = 0, uy + vx = 0.

The common boundary conditions are

Dirichlet u(s) = b1(s) for s ∈ Γ1

Neumann
∂u(s)

∂n̄
= b2(s) for s ∈ Γ2,

where Γ1 ∪ Γ2 = Γ = ∂Ω, is the boundary of Ω.
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Boundary Conditions

If only Neumann conditions are specified, then

∫∫

Ω
f dx̄ =

∫∫

Ω
∇2u d x̄ =

∫

Γ
n̄ · ∇u d s̄ =

∫

Γ

∂u

∂n̄
d s̄ =

∫

Γ
b2(s)ds̄

If this constraint, the integrability condition, is not satisfied, then
there are no solutions. — The sources in the region must balance
with the heat flux across the boundary, otherwise there can be no
steady temperature distribution.

Also note that the solution to ∇2u = f , with Neumann boundary
conditions on the entire boundary is determined up to an arbitrary
constant. — The temperature distribution cannot be determined
from the heat fluxes and sources/sinks alone.
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General Definition of Elliptic Equations

Definition

The general (quasi-linear) second-order elliptic equation in two
dimensions is an equation that can be written as

a(x , y)uxx + 2b(x , y)uxy + c(x , y)uyy + d(x , y , u, ux , uy ) = f (x , y)

where a, c > 0 and b2 < ac .

This implies that the quadratic form

a(x , y)ξ2+2b(x , y)ξη+c(x , y)η2 > 0, ∀(ξ, η) 6= (0, 0), (x , y) ∈ Ω

or equivalently that the matrix
[

a(x , y) b(x , y)
b(x , y) c(x , y)

]
is positive definite.
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Elliptic Problems — Key Property

Defining Property

The essential property of elliptic problems is that the solutions are
more differentiable than the data.

• The solutions to Poisson’s equation have two more derivatives
than the function f .

• The solutions to the biharmonic equation have four more
derivatives than the function f .

• The solutions to Laplace’s equation and the Cauchy-Riemann
equations are infinitely differentiable.
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Ellipticity and Regularity

The property that the solution is smoother (more differentiable) than the
data, characterizes an equation or system of equations as elliptic.

The ellipticity of an equation is often expressed in terms of regularity
estimates; — if P is a differential operator of order 2m, then the
operator is elliptic if there is a constant c0 such that the symbol of P ,
denoted by p(x , ξ), defined by

Definition (Symbol of P (without time dependence))

The symbol p(x , ξ) of the differential operator P is defined by

P
(
e iξx

)
= p(x , ξ)e iξx .

That is, the symbol is the quantity multiplying the function e iξx after
operating on this function with the differential operator.

satisfies |p(x , ξ)| ≥ c0‖ξ‖2m for values of |ξ| sufficiently large.
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Regularity Estimates for Elliptic Equations 1 of 4

We consider the constant coefficient equation

auxx + 2buxy + cuyy + d1ux + d2uy + eu = f , (x , y) ∈ R2.

The Fourier transform of the solution and the inversion formula are
given by

û(ξ1, ξ2) =
1

2π

∫∫

R2

e−i(xξ1+yξ2)u(x , y) dx dy

u(x , y) =
1

2π

∫∫

R2

e i(xξ1+yξ2)û(ξ1, ξ2) dξ1 dξ2.

Parseval’s relation extends to 2D:
∫∫

R2

|u(x , y)|2 dx dy =

∫∫

R2

|û(ξ1, ξ2)|2 dξ1 dξ2.
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Regularity Estimates for Elliptic Equations 2 of 4

Further, derivative smoothness estimates also extend:

∫∫

R2

∣∣∣∣
∂r+s

∂x r∂y s
u(x , y)

∣∣∣∣
2

dx dy =

∫∫

R2

| ξr1 ξs2 û(ξ1, ξ2)|2 dξ1 dξ2

≤
∫∫

R2

(ξ21 + ξ22)
r+s |û(ξ1, ξ2)|2 dξ1 dξ2.

We now apply this to the constant coefficient equation, and get

(aξ21 + 2bξ1ξ2 + cξ22 − id1ξ1 − id2ξ2 − e)û = −f̂ ,

or

û(ξ1, ξ2) =
−f̂ (ξ1, ξ2)

(aξ21 + 2bξ1ξ2 + cξ22 − id1ξ1 − id2ξ2 − e)
.
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Regularity Estimates for Elliptic Equations 3 of 4

Since we are requiring b2 < ac and a, c > 0, we have

aξ21 + 2bξ1ξ2 + cξ22 ≥ c0(ξ
2
1 + ξ22),

for some constant c0, so that when |ξ̄|2 = ξ21 + ξ22 ≥ C 2
0 for some value

C0, we have

|aξ21 + 2bξ1ξ2 + cξ22 − id1ξ1 − id2ξ2 − e| ≥ c1(ξ
2
1 + ξ22),

and it follows that

|û(ξ1, ξ2)| ≤ C1
|f̂ (ξ1, ξ2)|
ξ21 + ξ22

, ξ21 + ξ22 ≥ C 2
0 .

We can now use Parseval’s relation and the derivative relation to derive a
regularity estimate for the derivatives of the solution u...
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Regularity Estimates for Elliptic Equations 4 of 4

∫∫

R2
|∂s1

x ∂s2
y u(x , y)|2 dx dy =

∫∫

R2
|ξs11 ξs22 û(ξ1, ξ2)|2 dξ1 dξ2

=

∫∫

|ξ̄|≤C0

|ξs11 ξs22 û(ξ1, ξ2)|2 dξ1 dξ2 +
∫∫

|ξ̄|>C0

|ξs11 ξs22 û(ξ1, ξ2)|2 dξ1 dξ2

≤
∫∫

|ξ̄|≤C0

|ξs11 ξs22 û(ξ1, ξ2)|2 dξ1 dξ2 + C2
1

∫∫

|ξ̄|>C0

(ξ21 + ξ22)
s1+s2−2 |f̂ (ξ1, ξ2)| dξ1 dξ2

≤ C
2(s1+s2)
0

∫∫

R2
|û(ξ1, ξ2)|2 dξ1 dξ2 + C2

1

∫∫

R2
(ξ21 + ξ22)

s1+s2−2 |f̂ (ξ1, ξ2)| dξ1 dξ2.

With the following norm-definition

‖u‖2s =
∑

s1+s2≤s

‖∂s1
x ∂s2

y u‖2,

the above shows the regularity estimate

‖u‖2s+2 ≤ Cs(‖f‖2s + ‖u‖20), as long as ∃ solutions u ∈ L2(R2).
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Regularity Estimates: Comments

Similar estimates can be derived for other elliptic equations; the
biharmonic, and other fourth-order equations satisfy estimates,
which show that the solution has derivatives of order 4 more than
the data, e.g.

‖u‖2s+4 ≤ Cs(‖f ‖2s + ‖u‖20).

Elliptic systems, such as the Stokes equations also satisfy regularity
estimates, but the concept of order must be generalized.

If the equation auxx + 2buxy + cuyy + d1ux + d2uy + eu = f holds
on a bounded domain Ω ⊂ R2, we can obtain an interior estimate
on a sub-domain Ω1 ⊂ Ω whose boundary is contained in Ω:

‖u‖2s+2,Ω1
≤ Cs(Ω,Ω1)(‖f ‖2s,Ω + ‖u‖20,Ω).
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Second-Order Elliptic Problems: Maximum Principles

Theorem (Maximum Principle)

Let L be a 2nd-order elliptic operator LΦ = aΦxx + 2bΦxy + cΦyy . If a
function u satisfies Lu ≥ 0 in a bounded domain Ω, then the maximum
value of u in Ω is attained on the boundary of Ω.

Note that the corresponding minimum principle holds: just change (≥,
maximum)  (≤, minimum) above.

Theorem

If the elliptic equation

auxx + 2buxy + cuyy + d1ux + d2uy + eu = 0,

holds in Ω, with a, c > 0 and e ≤ 0, then the solution u(x , y) cannot
have a positive local max. or a negative local min. in the interior of Ω.
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Maximum Principle for Laplace’s Equation

The physical interpretation of the maximum principle for Laplace’s
equation (steady-state heat equation with no interior
sources/sinks) is that for a steady temperature distribution, both
the hottest and the coldest temperatures occur at the boundary of
the region.

Harmonic functions (solutions of Laplace’s equation, or the
Cauchy-Riemann equations) have their maximum and minimum
values on the boundary of any domain.

The maximum principle can be used to prove uniqueness of the
solution to many elliptic equations.
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Illustration: Harmonic Function
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Figure: The surface and contour plots of the harmonic function u(x , y) = 1
2
(−x2−

xy + y2) on the unit square.
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Elliptic Equations: Boundary Conditions

We restrict our discussion to second order equations, and the
Dirichlet u = f , Neumann un̄ = g , and the mixed (Robin)
condition

∂u

∂n̄
+ αu = b

The existence and uniqueness of the solutions of a general
second-order elliptic equation given boundary conditions depend on
global constraints, such as the integrability condition∫∫

Ω f d x̄ =
∫
Γ b2(s) d s̄.

For certain equations, e.g. Poisson’s equation, the existence and
uniqueness questions have been answered: with Dirichlet boundary
conditions Poisson’s equation has a unique solution; and with
Neumann BCs there is a unique solution up to an additive
constant, if and only if the integrability condition is satisfied.
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Boundary Conditions...

If a Dirichlet boundary condition is enforced along a smooth part
of the boundary, then the normal derivative (⊥ to the boundary) at
the boundary will be as smooth as the derivative of the boundary
data (in the direction of the boundary).

If either the boundary data is discontinuous, or the boundary is
non-smooth, we may not be able to control the normal derivative.
If the boundary data is discontinuous, then the normal derivative is
unbounded at discontinuities.

If either Neumann or mixed BCs are enforced along a smooth
boundary, then the solution will be differentiable up to the
boundary, and the first derivatives will be as well behaved as the
boundary data.
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Comments about the Examples

The examples on the following slides are meant to illustrate how
lack of smoothness at boundaries

— In terms of specified boundary conditions,

— In terms of boundary geometry

impacts the (local) smoothness of the solution in a neighborhood
of those points lacking smoothness.

The solutions of elliptic equations will be well behaved near
smooth portions of the boundary. At points where the boundary
conditions are discontinuous, change type, or the boundary itself is
non-smooth, singularities in the solution’s derivatives typically
occur.
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Example #1 Discontinuous Dirichlet BC

Laplace’s equation, (x , y) ∈ R× R+, with BC given along the
x-axis

u(x , 0) =

{
0 x > 0
1 x ≤ 0
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u(x , y) = − 1

π
tan−1

(y
x

)
=

θ

π

∂u(x , y)

∂y
=

x

π(x2 + y2)

uy (x , 0) =
1

πx

Figure: The normal derivative is well-behaved except at the point (x , y) = (0, 0).
Note that uy (x , 0) is not in L2 in a neighborhood of the singularity.
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Example #2 Neumann with Non-Smooth “Contact”

Laplace’s equation, (x , y) ∈ R× R+, with BC given along the x-axis

∂u

∂y
(x , 0) =

{
0 x > 0√

|x | x ≤ 0
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u(x , y) = −2

3
r3/2 cos

(
3θ

2

)

(
∂u(x, y)

∂x
,
∂u(x, y)

∂y

)
=

(
−r1/2 cos

(
θ

2

)
, r1/2 sin

(
θ

2

))

ux(x , 0) = −|x |1/2 cos
(
θ

2

)

Figure: The tangential derivative, ux , at the boundary has the same smoothness
as the specified normal derivative.
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Example #3 Neumann-Dirichlet Transition

Laplace’s equation, (x , y) ∈ R× R+, with BC given along the
x-axis {

u(x , 0) = 0 x > 0
uy (x , 0) = 0 x ≤ 0
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u(x , y) = r1/2 sin

(
θ

2

)

ur (r , θ) =
1

2
r−1/2 sin

(
θ

2

)

urr (r , θ) = −1

4
r−3/2 sin

(
θ

2

)

Figure: Again, u and ux , uy are in L2(Ω) for any bounded domain Ω, but the second
derivatives are not. u is bounded at (0, 0), but no derivatives are.
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Example #4 Reentrant Corner; Geometry-Driven Singularity

Laplace’s equation, (x , y) ∈ {(r , θ) : 0 < r ≤ r0, 0 < θ < 3π/2}, with BC
given along the positive x- and negative y -axes

u(x , 0) = 0, x > 0; u(0, y) = 0, y ≤ 0
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)
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3
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9
r−4/3 sin

(
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3

)

Figure: u and ux , uy are in L2(Ω) for any bounded domain Ω in the upper half-plane
whose boundary contains a portion of the real axis around zero. However uxx , uxy , uyy 6∈
L2(Ω) because of the growth at the origin. — The corner, not the data, is the cause of
the lack of smoothness in the solution.
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