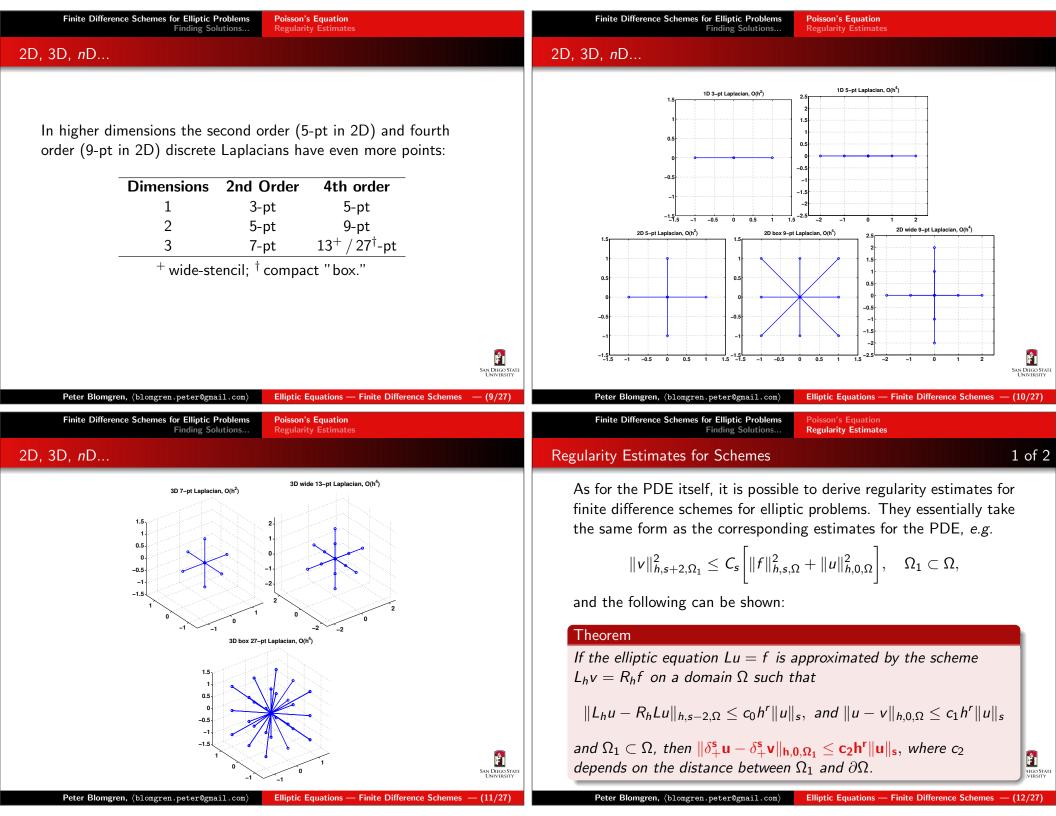
Finite Difference Schemes for Elliptic Problems Finding Solutions	Finite Difference Schemes for Elliptic Problems Finding Solutions
	Outline
Numerical Solutions to PDEs Lecture Notes #21 Elliptic Equations — Finite Difference Schemes	 Finite Difference Schemes for Elliptic Problems Poisson's Equation
Peter Blomgren, (blomgren.peter@gmail.com) Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research Center San Diego State University San Diego, CA 92182-7720 http://terminus.sdsu.edu/	 Regularity Estimates Finding Solutions Linear Iterative Methods Analysis of Linear Iterative Methods
Spring 2018	SAN DIGO STATI UNIVERSITY
Peter Blomgren, (blomgren.peter@gmail.com) Elliptic Equations — Finite Difference Schemes — (1/27) Finite Difference Schemes for Elliptic Problems Poisson's Equation	Peter Blomgren, (blomgren.peter@gmail.com) Elliptic Equations — Finite Difference Schemes — (2/27) Finite Difference Schemes for Elliptic Problems Poisson's Equation
Finding Solutions Regularity Estimates	Finding Solutions Regularity Estimates
Finite Difference Schemes for Elliptic Problems	The Five-Point Laplacian
We start out by considering Poisson's equation	Here, we use standard centered second order finite difference approximations for the spatial derivatives
$\nabla^2 u = f,$	$\delta_x^2 v_{\ell,m} + \delta_y^2 v_{\ell,m} = f_{\ell,m},$
in the unit square. We lay in a grid with spacings $\Delta x = \Delta y = h$:	or, equivalently,
	$\frac{1}{h^2} \left(v_{\ell+1,m} + v_{\ell-1,m} + v_{\ell,m+1} + v_{\ell,m-1} - 4v_{\ell,m} \right) = f_{\ell,m}.$ Figure: This difference operator is known as the five-point Laplacian, and the symbol ∇_h^2 is sometimes used. Applied at $(\ell, m) = (3, 5)$ we get the picture:

Finite Difference Schemes for Elliptic Problems Finding Solutions Regularity Estimates		Finite Difference Schemes for Ellipti Finding	c Problems Poisson's Equation Solutions Regularity Estimates	
Discrete Maximum Principle	Uniqueness of Solutions	Error Estimate		
Deriving a maximum principle for the discrete 5-point Laplacia analogous to the maximum principle for the PDE is quite straight-forward:	in	The second theorem on s error estimate for the nur	lide 5 can be used to derive the f nerical solution	ollowing
Theorem (Discrete Maximum Principle)		Theorem		
If $\nabla_h^2 v \ge 0$ on a region, then the maximum value of v on this attained on the boundary. Similarly if $\nabla_h^2 v \le 0$, then the minin of v is attained on the boundary.		Dirichlet boundary condit	on to $ abla^2 u = f$ on the unit square tions and let $v_{\ell,m}$ be the solution $x_\ell, y_m)$ on the boundary. Then	
Further, for $ abla_h^2 v = f$, it can be shown		<i>u</i> -	$\ - v \ _{\infty} \leq c h^2 \ \partial^4 u \ _{\infty}.$	
Theorem		We see that we get sees	ad order accuracy in the grid acre	motor b
If $v_{\ell,m}$ is a discrete function defined on a grid on the unit squa $v_{\ell,m} = 0$ on the boundary, then	are with	-	nd-order accuracy in the grid para s on the maximal value of the fou	
		derivatives of the exact se	olution.	
$\ v\ _\infty \leq rac{1}{8} \ abla_h^2 v\ _\infty = rac{1}{8} \ f\ _\infty.$	IIGO STATE Versity			SAN DIEGO STATE University
Peter Blomgren, <pre></pre>	ce Schemes — (5/27)	Peter Blomgren, <pre> <b< th=""><th>gmail.com Elliptic Equations — Finite Difference</th><th>Schemes — (6/27)</th></b<></br></br></br></br></br></br></br></br></br></br></br></br></br></pre>	gmail.com Elliptic Equations — Finite Difference	Schemes — (6/27)
Finite Difference Schemes for Elliptic Problems Finding Solutions Regularity Estimates		Finite Difference Schemes for Ellipti Finding	c Problems Poisson's Equation Solutions Regularity Estimates	
The 9-Point Laplacian 4th Order Accuracy	1 of 2	The 9-Point Laplacian	4th Order Accuracy	2 of 2
Using Taylor expansions, it is quite easy* to identify what correspondent to be made to the 5-point Laplacian in order to cancel ou second order error terms; this procedure leads to the 4th order scheme: $\nabla_h^2 v + \frac{1}{12} \left(\Delta x^2 + \Delta y^2 \right) \delta_x^2 \delta_y^2 v = f + \frac{1}{12} \left(\Delta x^2 \delta_x^2 + \Delta y^2 d A \right)$ In the case $\Delta x = \Delta y = h$ this breaks down to	ections ut the accurate	The 9-Point Laplacian	4th Order Accuracy	2 of 2
Using Taylor expansions, it is quite easy* to identify what correspondence to be made to the 5-point Laplacian in order to cancel our second order error terms; this procedure leads to the 4th order scheme: $\nabla_h^2 v + \frac{1}{12} \left(\Delta x^2 + \Delta y^2 \right) \delta_x^2 \delta_y^2 v = f + \frac{1}{12} \left(\Delta x^2 \delta_x^2 + \Delta y^2 d A \right)$ In the case $\Delta x = \Delta y = h$ this breaks down to $\frac{1}{6} (v_{\ell+1,m+1} + v_{\ell+1,m-1} + v_{\ell-1,m+1} + v_{\ell-1,m-1})$	ections ut the accurate δ_y^2 f.	1 0.9 0.8 0.7 0.6 0.5 0.4 0.3	4th Order Accuracy	2 of 2
Using Taylor expansions, it is quite easy* to identify what correspondence to be made to the 5-point Laplacian in order to cancel our second order error terms; this procedure leads to the 4th order scheme: $\nabla_h^2 v + \frac{1}{12} \left(\Delta x^2 + \Delta y^2 \right) \delta_x^2 \delta_y^2 v = f + \frac{1}{12} \left(\Delta x^2 \delta_x^2 + \Delta y^2 d A \right)$ In the case $\Delta x = \Delta y = h$ this breaks down to	ections ut the caccurate δ_y^2 f.	Figure: The 9-point Laplacia in the expression, and the val	0.2 0.4 0.6 0.8 1 0.2 1.4 the five non-corners of the boss maximum principles and error estimates	e involved x are also



Finite Difference Schemes for Elliptic Problems Finding Solutions Poisson's Equation Regularity Estimates	Finite Difference Schemes for Elliptic Problems Finding Solutions Linear Iterative Methods Analysis of Linear Iterative Methods
Regularity Estimates for Schemes 2 of 2	Solving Finite Difference Schemes for Elliptic Problems
The theorem (on slide 12) shows that if f is smooth enough, then the finite differences of v approximate the finite differences of the exact solution u to the same order that v itself approximates u . In general, this is not true since $\frac{v_{\ell+1,m} - v_{\ell-1,m}}{2h} = \frac{\partial u(x_{\ell}, y_m)}{\partial x} + \mathcal{O}(h^{r-1})$ <i>i.e.</i> the division by $2h$ reduces divides the error by a factor of h . Weight the division by $2h$ reduces divides the error by a factor of h . However, the theorem states that when $v_{\ell,m}$ and u are solutions to elliptic problems, then the error term can be $\mathcal{O}(h^r)$. — This is a significant result.	We now turn our attention to the important issue of how to find the (numerical) solutions to schemes for elliptic problems. We consider Laplace's equation $\nabla^2 u = 0$ on the unit square, with Dirichlet boundary conditions. The 5-point Laplacian gives the relation $v_{\ell+1,m} + v_{\ell-1,m} + v_{\ell,m+1} + v_{\ell,m-1} - 4v_{\ell,m} = 0$, at the interior points . By mapping $k = \ell + (m-1) \cdot n_x$, where $h = 1/(n_x - 1) = 1/(n_y - 1) (n_x, n_y \text{ being the number of}$ grid-points in the <i>x</i> - and <i>y</i> -directions respectively), and $w_k = v_{\ell,m}$ we get a linear system: $A\overline{\mathbf{w}} = \overline{\mathbf{b}}$.
Peter Blomgren, (blomgren.peter@gmail.com) Elliptic Equations — Finite Difference Schemes — (13/27)	Peter Blomgren, (blomgren.peter@gmail.com) Elliptic Equations — Finite Difference Schemes — (14/27)
Finite Difference Schemes for Elliptic Problems Finding Solutions Linear Iterative Methods Analysis of Linear Iterative Methods	Finite Difference Schemes for Elliptic Problems Linear Iterative Methods Finding Solutions Analysis of Linear Iterative Methods
The Linear System $A\bar{\mathbf{w}} = \bar{\mathbf{b}}$ 1 of 2	The Linear System $A\mathbf{\bar{w}} = \mathbf{\bar{b}}$ 2 of 2
Matrix Entries Corresponding to BCs at x=0, and x=1 Matrix Entries Corresponding to BCs at y=0, and y	The RIGHT-HAND-SIDE $\mathbf{\bar{b}}$ is zero, except in the entries corresponding to the boundary conditions; here we set (for $(x_{\ell}, y_m) \in \Gamma$) $b_{\ell+(m-1)n_x} = \sin(2\pi x_{\ell})y_m + (1-2 x_{\ell}-1/2)(y_m-1) + \sin(4\pi y_m)$, and get the solution; — here on a 33 × 33-grid, with a corresponding 1,089×1,089-matrix A:

Finite Difference Schemes for Elliptic Problems Finding Solutions Linear Iterative Methods Analysis of Linear Iterative Methods	Finite Difference Schemes for Elliptic Problems Finding Solutions Linear Iterative Methods Analysis of Linear Iterative Methods
Solving Elliptic Problems and $A\mathbf{\bar{w}} = \mathbf{\bar{b}}$	Linear Iterative Methods for $A\mathbf{\bar{w}} = \mathbf{\bar{b}}$ 1 of 4
The numerical solution of elliptic problems invariably reduces to, hopefully efficiently, solving a linear system $A\bar{\mathbf{w}} = \bar{\mathbf{b}}$, where A is the discretization of the elliptic operator. As we can see, the matrix A has a lot of "structure," in particular the majority of the entries are zeros (<i>i.e.</i> the matrix is sparse). Here, with the 5-point Laplacian, the "fill rate" is only $\sim 5/(n_x \cdot n_y) \sim 5h^2$. Taking full advantage of this structure is the key to efficient elliptic solvers. As a benchmark, standard Gaussian Elimination applied to this problem requires $\mathcal{O}(n_x^3 n_y^3) \sim \mathcal{O}(h^{-6})$ operations, this quickly grows out of control (in 3D the operation count grows as $\mathcal{O}(h^{-9})$).	 Directly inverting Aw = b by Gaussian elimination is usually out of the question for any problem of interesting size. To get us thinking in the right direction, we look at three "classical" algorithms for approaching this problem: the Jacobi method, the Gauss-Seidel method, and the SOR method. These methods are not particularly good, but serve as a starting point for our discussion.
Peter Blomgren, (blomgren.peter@gmail.com) Elliptic Equations — Finite Difference Schemes — (17/27)	Peter Blomgren, (blomgren.peter@gmail.com) Elliptic Equations — Finite Difference Schemes — (18/27)
Finite Difference Schemes for Elliptic Problems Linear Iterative Methods Finding Solutions Analysis of Linear Iterative Methods	Finite Difference Schemes for Elliptic Problems Finding Solutions Linear Iterative Methods Analysis of Linear Iterative Methods
Linear Iterative Methods for $A\overline{\mathbf{w}} = \overline{\mathbf{b}}$ 2 of 4	Linear Iterative Methods for $A\bar{\mathbf{w}} = \bar{\mathbf{b}}$ 3 of 4

Ê

SAN DIEGO S

The **Jacobi method** is given by the update formula

 $\mathbf{v}_{\ell,m}^{k+1} = \frac{1}{4} \left(\mathbf{v}_{\ell+1,m}^{k} + \mathbf{v}_{\ell-1,m}^{k} + \mathbf{v}_{\ell,m+1}^{k} + \mathbf{v}_{\ell,m-1}^{k} \right),$

applied to all interior points $\ell \in [2, n_x - 1]$, $m \in [2, n_y - 1]$. Once all the values $v_{\ell,m}^{k+1}$ are computed, we move on to compute $v_{\ell,m}^{k+2}$. Each iteration ("sweep") requires $\mathcal{O}(n_x n_y)$ operations/memory accesses. As long as this converges in less than $n_x^2 n_y^2$ iterations, this procedure will be faster than straight Gaussian elimination.

Storage Consideration: The Jacobi method requires (at least) two copies of the grid (time-level k, and k + 1).

The Jacobi method converges very slowly (especially for large matrices), and it is quite easy to improve on it.

The **Gauss-Seidel method** converges twice as fast, and does not require extra storage to keep $v_{\ell,m}^k$ and the update $v_{\ell,m}^{k+1}$ simultaneously; the update formula is "Jacobi-style" but we use computed values as soon as we have them, *i.e.*

$$v_{\ell,m}^{k+1} = \frac{1}{4} \left(v_{\ell+1,m}^{k} + v_{\ell-1,m}^{k+1} + v_{\ell,m+1}^{k} + v_{\ell,m-1}^{k+1} \right),$$

Storage Consideration: The Gauss-Seidel method one requires one copy of the grid, since it is being over-written as the computation moves along.

The movies: *jacobi_update.mpg* and *gs_update.mpg* each illustrate the update sequence for one sweep.

SAN DIEGO S

Finite Difference Schemes for Elliptic Problems Linear Iterative Methods Finding Solutions Analysis of Linear Iterative Methods	Finite Difference Schemes for Elliptic Problems Finding Solutions Linear Iterative Methods Analysis of Linear Iterative Methods
Linear Iterative Methods for $A\bar{\mathbf{w}} = \bar{\mathbf{b}}$ 4 of 4	Analysis of Linear Iterative Methods 1 of 6
The Successive Over-relaxation (SOR) method is an accelerated version of Gauss-Seidel $v_{\ell,m}^{k+1} = v_{\ell,m}^{k} + \omega \left[\frac{1}{4} \left(v_{\ell+1,m}^{k} + v_{\ell-1,m}^{k+1} + v_{\ell,m+1}^{k} + v_{\ell,m-1}^{k+1} \right) - v_{\ell,m}^{k} \right],$	We can only give the flavor of the analysis here, a full treatment requires the knowledge from Math 543 – Numerical Matrix Analysis and another semester course (643 – to be developed???) in iterative methods on top of that.
where $\omega \in (0, 2)$. When $\omega = 1$ it reduces to Gauss-Seidel, and for the optimal choice [*] of ω is it significantly faster than the Gauss-Seidel iteration. It turns out that (not so obviously) $\omega^* = \frac{2}{1 + \sin(\pi/(N-1))}$, is the optimal choice for the 5-point Laplace operator on an $N \times N$ grid on the unit square.	 The following is an excellent reference: [SAAD2003] Yousef Saad, "Iterative Methods for Sparse Linear Systems," 2nd edition, Society for Industrial and Applied Mathematics (SIAM), 2003. ISBN 978-0-898715-34-7 (paperback), \$117.00 (\$81.90 member price). Recently published: [MS2015] Josef Málek and Zdenek Strakos, "Preconditioning and the Conjugate Gradient Method in the Context of Solving PDEs," Society for Industrial and Applied Mathematics (SIAM), 2015. ISBN 978-1-611973-83-9 (paperback), \$39.00 (\$27.30 member price).
Peter Blomgren, (blomgren.peter@gmail.com) Elliptic Equations — Finite Difference Schemes — (21/27)	Peter Blomgren, (blomgren.peter@gmail.com) Elliptic Equations — Finite Difference Schemes — (22/27)
Peter Blomgren, (blomgren.peter@gmail.com) Elliptic Equations — Finite Difference Schemes — (21/27) Finite Difference Schemes for Elliptic Problems Linear Iterative Methods	Peter Blomgren, (blomgren.peter@gmail.com) Elliptic Equations — Finite Difference Schemes — (22/27) Finite Difference Schemes for Elliptic Problems Linear Iterative Methods
Peter Blomgren, (blomgren.peter@gmail.com) Elliptic Equations — Finite Difference Schemes — (21/27) Finite Difference Schemes for Elliptic Problems Finding Solutions Linear Iterative Methods Analysis of Linear Iterative Methods	Peter Blomgren, (blomgren.peter@gmail.com) Elliptic Equations — Finite Difference Schemes — (22/27) Finite Difference Schemes for Elliptic Problems Finding Solutions Linear Iterative Methods Analysis of Linear Iterative Methods
Peter Blomgren, (blomgren.peter@gmail.com) Elliptic Equations — Finite Difference Schemes — (21/27) Finite Difference Schemes for Elliptic Problems Finding Solutions Linear Iterative Methods Analysis of Linear Iterative Methods Analysis of Linear Iterative Methods 2 of 6 The iterative methods we have described are all aiming at solving a linear system	Peter Blomgren, (blomgren.peter@gmail.com)Elliptic Equations — Finite Difference Schemes — (22/27)Finite Difference Schemes for Elliptic Problems Finding SolutionsLinear Iterative Methods Analysis of Linear Iterative MethodsAnalysis of Linear Iterative Methods3 of 6From $B\bar{e}^{k+1} = C\bar{e}^k$ we see that
Peter Blomgren, (blomgren.peter@gmail.com)Elliptic Equations — Finite Difference Schemes for Elliptic Problems Finding SolutionsLinear Iterative Methods Analysis of Linear Iterative MethodsAnalysis of Linear Iterative Methods2 of 6The iterative methods we have described are all aiming at solving a linear system $A\overline{\mathbf{x}} = \overline{\mathbf{b}}$, and can be viewed as decomposing the matrix A by writing it as	Peter Blomgren, (blomgren.peter@gmail.com)Elliptic Equations — Finite Difference Schemes — (22/27)Finite Difference Schemes for Elliptic Problems Finding SolutionsLinear Iterative Methods Analysis of Linear Iterative MethodsAnalysis of Linear Iterative Methods3 of 6From $B\bar{e}^{k+1} = C\bar{e}^k$ we see that $\bar{e}^{k+1} = B^{-1}C\bar{e}^k$, where the matrix $M = B^{-1}C$ is called the iteration matrix for the
Peter Blomgren, (blomgren.peter@gmail.com)Elliptic Equations — Finite Difference Schemes — (21/27)Finite Difference Schemes for Elliptic Problems Finding SolutionsLinear Iterative Methods Analysis of Linear Iterative MethodsAnalysis of Linear Iterative Methods2 of 6The iterative methods we have described are all aiming at solving a linear system $A\bar{\mathbf{x}} = \bar{\mathbf{b}}$, and can be viewed as decomposing the matrix A by writing it as $A = B - C$ and then iteratively solving the system of equations $B\bar{\mathbf{x}}^{k+1} = C\bar{\mathbf{x}}^k + \bar{\mathbf{b}}$.In the Jacobi case B is the diagonal part of A, and in the	Peter Blomgren, (blomgren.peter@gmail.com)Elliptic Equations — Finite Difference Schemes — (22/27)Finite Difference Schemes for Elliptic Problems Finding SolutionsLinear Iterative Methods Analysis of Linear Iterative MethodsAnalysis of Linear Iterative MethodsAnalysis of Linear Iterative MethodsAnalysis of Linear Iterative Methods3 of 6From $B\bar{e}^{k+1} = C\bar{e}^k$ we see that $\bar{e}^{k+1} = B^{-1}C\bar{e}^k$,where the matrix $M = B^{-1}C$ is called the iteration matrix for the algorithm.Clearly, we want the error to go to zero as fast as possible. The rate of convergence to zero is controlled by the spectral radius, ρ

SAN DIEGO STATE UNIVERSITY The spectral radius, $\rho(B^{-1}C)$, must be strictly bounded by 1 in order for the iterative scheme to be convergent.

 $B \overline{e}^{k+1} = C \overline{e}^k.$

get an iterative equation for the error, $\boldsymbol{\bar{e}}:$

San Diego Stat. University

5 of 6

Analysis of Linear Iterative Methods

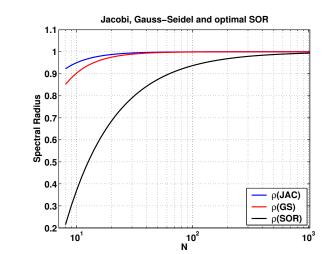


Figure: The spectral radii for the Jacobi, Gauss-Seidel, and SOR iteration matrices corresponding to the 5-point Laplacian. We see that all three approach one very rapidly. SAN DIEGO STAT UNIVERSITY

Peter Blomgren, (blomgren.peter@gmail.com) Elliptic Equations — Finite Difference Schemes — (26/27)

Finite Difference Schemes for Elliptic Problems

After k iterations we have the following estimate for the error

Finding Solutions...

$$\left\| \mathbf{\bar{e}}^{k} \right\| <
ho(B^{-1}C)^{k} \cdot \left\| \mathbf{\bar{e}}^{0} \right\|$$

Linear Iterative Methods

Analysis of Linear Iterative Methods

4 of 6

Clearly, the smaller $\rho(B^{-1}C)$ is the faster we reach acceptable convergence $\|\mathbf{\bar{e}}^k\| \leq \epsilon_{tol}$.

For the 5-point Laplacian, the spectral radii for the Jacobi, Gauss-Seidel, and optimal SOR iteration matrices are

