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Finite Difference Schemes for Elliptic Problems

We start out by considering Poisson’s equation

∇2u = f ,

in the unit square. We lay in a grid with spacings ∆x = ∆y = h:
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The Five-Point Laplacian

Here, we use standard centered second order finite difference
approximations for the spatial derivatives

δ2xvℓ,m + δ2yvℓ,m = fℓ,m,

or, equivalently,

1

h2
(vℓ+1,m + vℓ−1,m + vℓ,m+1 + vℓ,m−1 − 4vℓ,m) = fℓ,m.

Figure: This difference operator is
known as the five-point Laplacian,
and the symbol ∇2

h is sometimes
used. Applied at (ℓ,m) = (3, 5)
we get the picture:
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Discrete Maximum Principle  Uniqueness of Solutions...

Deriving a maximum principle for the discrete 5-point Laplacian
analogous to the maximum principle for the PDE is quite
straight-forward:

Theorem (Discrete Maximum Principle)

If ∇2
hv ≥ 0 on a region, then the maximum value of v on this region is

attained on the boundary. Similarly if ∇2
hv ≤ 0, then the minimum value

of v is attained on the boundary.

Further, for ∇2
hv = f , it can be shown

Theorem

If vℓ,m is a discrete function defined on a grid on the unit square with

vℓ,m = 0 on the boundary, then

‖v‖∞ ≤
1

8
‖∇2

hv‖∞ =
1

8
‖f ‖∞.
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Error Estimate

The second theorem on slide 5 can be used to derive the following
error estimate for the numerical solution

Theorem

Let u(x , y) be the solution to ∇2u = f on the unit square with

Dirichlet boundary conditions and let vℓ,m be the solution to

∇2
hv = f with vℓ,m = u(xℓ, ym) on the boundary. Then

‖u − v‖∞ ≤ ch2‖∂4u‖∞.

We see that we get second-order accuracy in the grid parameter h,
and the constant depends on the maximal value of the fourth order
derivatives of the exact solution.
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The 9-Point Laplacian 4th Order Accuracy 1 of 2

Using Taylor expansions, it is quite easy∗ to identify what corrections
need to be made to the 5-point Laplacian in order to cancel out the
second order error terms; this procedure leads to the 4th order accurate
scheme:

∇2
hv +

1

12

(

∆x2 +∆y2
)

δ2xδ
2
yv = f +

1

12

(

∆x2δ2x +∆y2δ2y
)

f .

In the case ∆x = ∆y = h this breaks down to

1

6
(vℓ+1,m+1 + vℓ+1,m−1 + vℓ−1,m+1 + vℓ−1,m−1)

+
2

3
(vℓ+1,m + vℓ−1,m + vℓ,m+1 + vℓ,m−1)−

10

3
vℓ,m

=
h2

12
(fℓ+1,m + fℓ−1,m + fℓ,m+1 + fℓ,m−1 + 8fℓ,m).

∗ See e.g. Lecture #6.
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The 9-Point Laplacian 4th Order Accuracy 2 of 2
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Figure: The 9-point Laplacian. The values of v at all nine points are involved
in the expression, and the values of f at the five non-corners of the box are also
involved. The scheme satisfies maximum principles and error estimates similar to
the standard five-point Laplacian.
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2D, 3D, nD...

In higher dimensions the second order (5-pt in 2D) and fourth
order (9-pt in 2D) discrete Laplacians have even more points:

Dimensions 2nd Order 4th order
1 3-pt 5-pt
2 5-pt 9-pt
3 7-pt 13+ / 27†-pt

+ wide-stencil; † compact ”box.”
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2D, 3D, nD...
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2D, 3D, nD...
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Regularity Estimates for Schemes 1 of 2

As for the PDE itself, it is possible to derive regularity estimates for
finite difference schemes for elliptic problems. They essentially take
the same form as the corresponding estimates for the PDE, e.g.

‖v‖2h,s+2,Ω1
≤ Cs

[

‖f ‖2h,s,Ω + ‖u‖2h,0,Ω

]

, Ω1 ⊂ Ω,

and the following can be shown:

Theorem

If the elliptic equation Lu = f is approximated by the scheme

Lhv = Rhf on a domain Ω such that

‖Lhu − RhLu‖h,s−2,Ω ≤ c0h
r‖u‖s , and ‖u − v‖h,0,Ω ≤ c1h

r‖u‖s

and Ω1 ⊂ Ω, then ‖δs+u− δs+v‖h,0,Ω1
≤ c2h

r‖u‖s, where c2
depends on the distance between Ω1 and ∂Ω.
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Regularity Estimates for Schemes 2 of 2

The theorem (on slide 12) shows that if f is smooth enough, then
the finite differences of v approximate the finite differences of the
exact solution u to the same order that v itself approximates u.

In general, this is not true since

vℓ+1,m − vℓ−1,m

2h
=

∂u(xℓ, ym)

∂x
+O

(

hr−1
)

i.e. the division by 2h reduces divides the error by a factor of h.

However, the theorem states that when vℓ,m and u are
solutions to elliptic problems, then the error term can be
O (hr ). — This is a significant result.
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Solving Finite Difference Schemes for Elliptic Problems

We now turn our attention to the important issue of how to find
the (numerical) solutions to schemes for elliptic problems.

We consider Laplace’s equation ∇2u = 0 on the unit square, with
Dirichlet boundary conditions. The 5-point Laplacian gives the
relation

vℓ+1,m + vℓ−1,m + vℓ,m+1 + vℓ,m−1 − 4vℓ,m = 0,

at the interior points. By mapping k = ℓ+ (m − 1) · nx , where
h = 1/(nx − 1) = 1/(ny − 1) (nx , ny being the number of
grid-points in the x- and y -directions respectively), and wk = vℓ,m
we get a linear system:

Aw̄ = b̄.
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The Linear System Aw̄ = b̄ 1 of 2
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Illustration: The structure of the matrix A, the first
panel show the diagonal entries, 1, corresponding to the
boundary condition at x = 0, 1, 0 < y < 1; the second
panel to the diagonal entries for the BC at y = 0, 1,
0 ≤ x ≤ 1; the third panel to the interior relations (the
diagonal entry is −4 and the four off-diagonal entries
are 1). The final panel shows the completed matrix.
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The Linear System Aw̄ = b̄ 2 of 2

The Right-Hand-Side b̄ is zero, except in the entries corresponding to
the boundary conditions; here we set (for (xℓ, ym) ∈ Γ)

bℓ+(m−1)nx = sin(2πxℓ)ym + (1− 2 |xℓ − 1/2|)(ym − 1) + sin(4πym),

and get the solution; — here on a 33× 33-grid, with a corresponding
1,089×1,089-matrix A:
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Solving Elliptic Problems and Aw̄ = b̄ 29 = 512

The numerical solution of elliptic problems invariably reduces to,
hopefully efficiently, solving a linear system Aw̄ = b̄, where A is
the discretization of the elliptic operator.

As we can see, the matrix A has a lot of
“structure,” in particular the majority of
the entries are zeros (i.e. the matrix is
sparse). Here, with the 5-point Laplacian,
the “fill rate” is only ∼ 5/(nx · ny ) ∼ 5h2.
Taking full advantage of this structure is
the key to efficient elliptic solvers.
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As a benchmark, standard Gaussian Elimination applied to this
problem requires O

(

n3xn
3
y

)

∼ O
(

h−6
)

operations, this quickly
grows out of control (in 3D the operation count grows as O

(

h−9
)

).
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Linear Iterative Methods for Aw̄ = b̄ 1 of 4

Directly inverting Aw̄ = b̄ by Gaussian elimination is usually out of
the question for any problem of interesting size.

To get us thinking in the right direction, we look at three
“classical” algorithms for approaching this problem:

the Jacobi method,

the Gauss-Seidel method, and

the SOR method.

These methods are not particularly good, but serve as a
starting point for our discussion.
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Linear Iterative Methods for Aw̄ = b̄ 2 of 4

The Jacobi method is given by the update formula

vk+1
ℓ,m =

1

4

(

vkℓ+1,m + vkℓ−1,m + vkℓ,m+1 + vkℓ,m−1

)

,

applied to all interior points ℓ ∈ [2, nx − 1], m ∈ [2, ny − 1]. Once
all the values vk+1

ℓ,m are computed, we move on to compute vk+2
ℓ,m .

Each iteration (“sweep”) requires O (nxny ) operations/memory
accesses. As long as this converges in less than n2xn

2
y iterations,

this procedure will be faster than straight Gaussian elimination.

Storage Consideration: The Jacobi method requires (at least)
two copies of the grid (time-level k , and k + 1).
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Linear Iterative Methods for Aw̄ = b̄ 3 of 4

The Jacobi method converges very slowly (especially for large
matrices), and it is quite easy to improve on it.

The Gauss-Seidel method converges twice as fast, and does not
require extra storage to keep vkℓ,m and the update vk+1

ℓ,m

simultaneously; the update formula is “Jacobi-style” but we use
computed values as soon as we have them, i.e.

vk+1
ℓ,m =

1

4

(

vkℓ+1,m + vk+1
ℓ−1,m + vkℓ,m+1 + vk+1

ℓ,m−1

)

,

Storage Consideration: The Gauss-Seidel method one requires
one copy of the grid, since it is being over-written as the
computation moves along.

The movies: jacobi update.mpg and gs update.mpg each
illustrate the update sequence for one sweep.
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Linear Iterative Methods for Aw̄ = b̄ 4 of 4

The Successive Over-relaxation (SOR) method is an
accelerated version of Gauss-Seidel

vk+1
ℓ,m = vkℓ,m + ω

[

1

4

(

vkℓ+1,m + vk+1
ℓ−1,m + vkℓ,m+1 + vk+1

ℓ,m−1

)

− vkℓ,m

]

,

where ω ∈ (0, 2). When ω = 1 it reduces to Gauss-Seidel, and for
the optimal choice∗ of ω is it significantly faster than the
Gauss-Seidel iteration.

It turns out that (not so obviously)

ω∗ =
2

1 + sin(π/(N − 1))
,

is the optimal choice for the 5-point Laplace operator on an N ×N

grid on the unit square.
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Analysis of Linear Iterative Methods 1 of 6

We can only give the flavor of the analysis here, a full treatment
requires the knowledge from Math 543 – Numerical Matrix
Analysis and another semester course (643 – to be developed???)
in iterative methods on top of that.

The following is an excellent reference:

[Saad2003] Yousef Saad, “Iterative Methods for Sparse Linear Systems,” 2nd edi-
tion, Society for Industrial and Applied Mathematics (SIAM), 2003. ISBN
978-0-898715-34-7 (paperback), $117.00 ($81.90 member price).

Recently published:

[MS2015] Josef Málek and Zdenek Strakos, “Preconditioning and the Conjugate
Gradient Method in the Context of Solving PDEs,” Society for Indus-
trial and Applied Mathematics (SIAM), 2015. ISBN 978-1-611973-83-9
(paperback), $39.00 ($27.30 member price).
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Analysis of Linear Iterative Methods 2 of 6

The iterative methods we have described are all aiming at solving a
linear system

Ax̄ = b̄,

and can be viewed as decomposing the matrix A by writing it as
A = B − C and then iteratively solving the system of equations

B x̄k+1 = C x̄k + b̄.

In the Jacobi case B is the diagonal part of A, and in the
Gauss-Seidel case it is the lower triangular part of A.

We always want to choose B so that the (iterative) linear system is
easy (fast) to solve.

Since the exact solution satisfies Ax̄ = b̄ (and B x̄ = C x̄+ b̄), we
get an iterative equation for the error, ē:

Bēk+1 = Cēk.
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Analysis of Linear Iterative Methods 3 of 6

From B ēk+1 = C ēk we see that

ēk+1 = B−1C ēk,

where the matrix M = B−1C is called the iteration matrix for the
algorithm.

Clearly, we want the error to go to zero as fast as possible. The
rate of convergence to zero is controlled by the spectral radius, ρ
of the iteration matrix

ρ(M) = max
i

|λi |,

where λi , i = 1, . . . ,N are the eigenvalues of M.

The spectral radius, ρ(B−1C ), must be strictly bounded by 1 in
order for the iterative scheme to be convergent.
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Analysis of Linear Iterative Methods 4 of 6

After k iterations we have the following estimate for the error
∥

∥

∥
ēk
∥

∥

∥
< ρ(B−1C )k ·

∥

∥ē0
∥

∥

Clearly, the smaller ρ(B−1C ) is the faster we reach acceptable
convergence

∥

∥ēk
∥

∥ ≤ ǫtol.

For the 5-point Laplacian, the spectral radii for the Jacobi,
Gauss-Seidel, and optimal SOR iteration matrices are

ρJac ∼ 1−
π2

2N2
,

ρGS ∼ 1−
π2

N2
,

ρ∗SOR ∼ 1−
2π

N
.
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Analysis of Linear Iterative Methods 5 of 6
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Figure: The spectral radii for the Jacobi, Gauss-Seidel, and SOR iteration matrices
corresponding to the 5-point Laplacian. We see that all three approach one very rapidly.
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Analysis of Linear Iterative Methods tol = 10−8 6 of 6
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Figure: The impact of the spectral radius on the number of iterations to reach
10−8‖ē0‖.
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