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Recap Finite Differencing for Elliptic Problems Linear Iterative Schemes z,arzglgi;d?t?g:?ieidd' (R (o i meie Bl ey
Last Time: Finite Difference Schemes for Elliptic Problems Linear Iterative Schemes V%S
) ) ) We restate the Jacobi, Gauss-Seidel, and SOR iterations for
We looked the model problem V2u = f in the unit square in
introduced the 5- and 9-point discrete (2D) Laplacians (V25, V%g), A% — b.
which provide 2nd and 4th order accuracy, respectively.
In seeking numerical solutions we discovered that we quickly ended It is useful to think of A in terms of its diagonal, strictly lower
up with a matrix problem AXx = b, where the entries in the matrix triangular, and strictly upper triangular parts, i.e.
A are determined by the coefficients from the discrete Laplacian, A—D_1_U
and the entries in b are due to the boundary conditions (and f, - '
when f # 0). . .. .\
#0) If we consider Dirichlet boundary conditions, then we enumerate
We introduced the Jacobi, Gauss-Seidel, and the Successive the interior points (0 </ < ny, 0 <j < ny), and have
Over-Relaxation (SOR) methods for iteratively finding the solution; )
we showed how these methods can be interpreted as operation on _ _
- on . . P P Alitne) (i+mei) = 1 Aline) (1) +n0(41) = — 7
either directly on the grid function (somewhat useful for
implementation), or as a matrix operation (useful for analysis). when the ((i £1) + ny - (j £ 1))-elements refer to points that are
o neighbors of (x;, y;), i.e. non-boundary points. R
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Jacobi, Gauss-Seidel, and SOR

(5-Point Laplacian)
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Figure: [LEFT] The Matrix A =1 — U — L corresponding to the discrete 5-point Laplacian
on a grid with 6 x 6 interior points and Dirichlet boundary conditions; [RIGHT] The Matrix
A =1—U —L corresponding to the discrete compact 9-point Laplacian on a grid with 6 X 6
interior points and Dirichlet boundary conditions;
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In terms of these matrix-splittings, we have

Jacobi _
Dx*t! = (L4 U)Xk +b;

Gauss-Seidel _
(D — L)t = UK + b;

1 1— _
(—D— L) ghHl — <—“’D+ U> %5+ b.

w w

The methods are convergent since the iteration matrices

1 1o
M; =D~} (L+ U), Mgs = (D —L)"'U, Msor = (*D*/—> (JDJr U)
w w

have spectral radii strictly less than 1 (for w € (0,2)). smgyr
— (6/21)
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Convergence of Jacobi and Gauss-Seidel Definitions-2

Definition (Diagonal Dominance)

A matrix is diagonally dominant if
> lajl < lail
J#i

for each row i. A row is strictly diagonally dominant of the
inequality holds strictly and a matrix is strictly diagonally dominant
if each row is strictly diagonally dominant.

This definition is relevant to our discussion since many schemes for

elliptic problems give rise to diagonally dominant matrices; the 5-

and 9-point Laplacians are two examples.
3
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Definition (Matrix Permutation)

The permutation of a matrix is the simultaneous permutation of
the rows and columns of the matrix, i.e. aj = a,(i),0(j)-

Definition (Reducible Matrix)
A matrix is reducible if there is a permutation o under which A has

the structure
|: 1 :|
A ‘2

where A; and A, are square matrices. A matrix is irreducible if it
is not reducible.
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Successive Over-Relaxation (SOR) 1of4

We can perform the Jacobi and Gauss-Seidel iterative methods to
a general linear system Ax = b, where we express the matrix A in
the foom A=D — L — U:

x<t1 =D (D - A)x* +b)= (I - D'A)x* — D"'b Jacobi

%1 = (D — L)"}(UX* +b) Gauss-Seidel

We notice that the diagonal dominance of a matrix is unaffected
by simultaneous row- and column-permutations.

The Gauss-Seidel method is dependent on permutations of the
matrix, whereas the Jacobi method is not.

Theorem

If A is an irreducibly diagonally dominant matrix, then the Jacobi | _
and Gauss-Seidel methods are convergent.

IVERSITY
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Without going into details, we summarize some key results for the SOR
iteration applied to the finite difference discretization of Laplace's
equation in two dimensions using the 5-point Laplacian

1 1— _
(D— L> ghH1 — <°"D+ U> %5 L b.
w

w
The non-zero eigenvalues A of Msogr = (
related to the eigenvalues y of M), = D
equation in vV

sD- L)_l (:=2D + U) are
~1(L + U), by a quadratic
Adw—1 B

w2

From this relation it can be shown that we must require

0<w<2,

in order for p(Msor) < 1. Sa D s
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Successive Over-Relaxation (SOR) 3 of 4

Minimizing p(Msor) with respect to w gives

B 2

14 V1= cos?(m/N)’
where the resulting optimal spectral radius

2

N

is a dramatic improvement over Jacobi/Gauss-Seidel:

*

*

pr=w"—1~1-

Spectral Radius for SOR (N=10)
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Comparison of spectral radii as a function of the problem size:

2D — 5-Point Laplacian
n| ] p(My) | p(Mgs) | p(Msor)
8 64 | 0.9397 | 0.8830 0.6460
16 | 256 | 0.9830 | 0.9662 0.7698
32 | 1024 | 0.9955 | 0.9910 0.8619
64 | 4096 | 0.9988 | 0.9977 0.9221
96 | 9216 | 0.9995 | 0.9990 0.9455
N 2
w =

1+ +/1—cos?(m/n)

SAN DIEGO STATE
UNIVERSITY

Peter Blomgren, (blomgren.peterQgmail.com) Elliptic Equations, Iterative Schemes — (12/21)




Jacobi, Gauss-Seidel, (S)SOR for the Discrete 5-point Laplacian

Linear Iterative Schemes R
Preconditioning

Successive Over-Relaxation (SOR) 4 of 4

Linear Iterative Schemes v
Preconditioning

5-Point Laplacian ~» 9-point Laplacian ~» SPD Matrices

Jacobi, Gauss-Seidel, (S)SOR for the Discrete 5-point Laplacian

It is possible to quantify how many iterations are necessary in order
to achieve a prescribed error tolerance; given the spectral radius p,
we need pk ~ € in order to reduce the error by a factor e.

From this, we get
2
kes ~ — log(e™?
GS 7[_2 g(€ )
-1
klon ~ 3 log(e™ ™).
Each iteration requires O (Nz) operations, hence the overall work,
which should be compared with O (N6) for Gaussian Elimination, is

N _
Wes ~ —5 log(e™)

1 [
WST:)R ~ F Iog(e )' s«nﬁfxn
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Unfortunately, the analysis which leads us to an exact expression
for the optimal w for the SOR iteration corresponding to the
5-point Laplacian is quite a bit messier for the fourth order
accurate 9-point Laplacian (see next slide).

However, the corresponding matrix is symmetric A= A’ and
positive definite A\(A) > 0, and there are many useful results for
this class of matrices, e.g.

Theorem

If A is symmetric positive definite, then the iterative method

Bxkt1 = Cxk + b based on the splitting A= B — C is convergent

if ]

or, equivalently, that BT + C is SPD (BT + C > 0).
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Example #1: SOR for a General Symmetric AX = b
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There are some results for the optimal relaxation parameter w for the
9-Point Laplacian:

@ [GARABADIAN-1956] “Estimation of the Relaxation Factor for
Small Mesh Size.” Mathematical Tables and Other Aids to
Computation Vol. 10, No. 56 (Oct., 1956), pp. 183-185.

wy ~2—2.04rh, p]~1—2357h

® [ADAMS-LEVEQUE-YOUNG-1988] “Analysis of the SOR lteration
for the 9-Point Laplacian.” SIAM Journal on Numerical Analysis
Vol. 25, No. 5 (Oct., 1988), pp. 1156-1180.

wy ~2—2.1167h, p5~1—1.791rh

the paper also explores the effect of different orderings of the grid

points.
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The SOR iteration applied to a symmetric matrix of the form

A=D—-L—-L" (D>0)

is the iteration BxK*1 = Cxk 4+ b where

1 1-
B=-D-L, C=-—YpyIT
w w

and using the second form of the theorem, we have

2 —w

BT +C= D,

w

which is positive definite as long as w € (0,2). Hence the SOR
iteration is convergent Vw € (0, 2).
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SSOR vs. SOR

Symmetric SOR (SSOR) is the point SOR scheme applied with a
forward and backward sweep. Describeq as a matrix splitting,
SSOR is the iteration Bx¥*1 = Cx* 4+ b where

B:LGD—L) (lD—LT>,
2—w \w w

C:L(l__wD+L) (1__°JD+LT>,
2—w w w

Since both B and C are symmetric, we apply the second form of
the theorem, and with a little bit of algebra we get

2w w 1 1 T
B+ C="r D+2_w<ﬁD—\/§L) (ED—\@L) ,

which is symmetric positive definite (and therefore the iteration is

SAN DIEGO STATE

convergent) for 0 < w < 2.
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Spectral Radius for SSOR (N=10) Spectral Radius for SOR (N=10)
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Figure: Surprisingly, the spectral radius for the SSOR iteration, even when
optimal, is not as favorable as the one for the SOR iteration.
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General Framework: Preconditioning 1of3 Preconditioning 2 0of 3
We “massage” the iterative scheme BxKT! = Cx¥ + b, where Finding good preconditioners is an art/science in itself; here we
A= B — C, to the equivalent form have talked about the Jacobi, Gauss-Seidel, SOR, and SSOR
preconditioners.
ck+1 _ p—1,zk —1F . — A
X“Tt"=B""Cx"+B . b, The general goals of a preconditioner B ~ A is that
G f e B captures most of the “action” of A:
where this means p(B~}(B-A)) <1 & B A~
G=BC=BYB-A)=I1-B1A The theorem on slide 14 quantifies the minimal amount of
_ “action” B must capture for an SPD matrix A.
The iteration X¥T1 = Gx* + f, can be viewed as a technique for _
solving the preconditioned system o The effect of B~! should be significantly easier to compute
than the effect of A=1.
- _F —1 2 -1
(I-Gx=f < B Ax=B"b, Since the Thomas Algorithm for tri-diagonal matrices solves
Ti=binO tions, letting B be the tri-di | part of A
where B is the preconditioner (B ~ A, and the effect of B~1 ) v n (n) operations =tHing © the trizdlagonal part o .
. . is sometimes a useful preconditioner. This is equivalent to the Line ry
easily computed.)
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SOR approach described in Strikwerda (p.359).
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Many of our “old” algorithms, e.g. the Peaceman-Rachford
alternating direction implicit (ADI) scheme, can be viewed from a
matrix-centric point of view as a preconditioned iteration with
tri-diagonal preconditioners.

The alternating direction part corresponds to the
numbering-order of the grid points:

e When we solve in the x-direction, we enumerate the grid-points
along the x-axis first, so that the neighboring points in that
direction correspond to the first super- and sub-diagonal
elements in the matrix.

e When we solve in the y-direction, we enumerate the grid-points
along the y-axis first, so that the neighboring points in that di-
rection correspond to the first super- and sub-diagonal elements
in the matrix.

UNIVERSITY

Peter Blomgren, (blomgren.peter@gmail.com) Elliptic Equations, Iterative Schemes —(21/21)




