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Recap Finite Differencing for Elliptic Problems

Last Time: Finite Difference Schemes for Elliptic Problems

We looked the model problem ∇2u = f in the unit square in
introduced the 5- and 9-point discrete (2D) Laplacians (∇2

h5
, ∇2

h9
),

which provide 2nd and 4th order accuracy, respectively.

In seeking numerical solutions we discovered that we quickly ended
up with a matrix problem Ax̄ = b̄, where the entries in the matrix
A are determined by the coefficients from the discrete Laplacian,
and the entries in b̄ are due to the boundary conditions (and f ,
when f 6≡ 0).

We introduced the Jacobi, Gauss-Seidel, and the Successive
Over-Relaxation (SOR) methods for iteratively finding the solution;
we showed how these methods can be interpreted as operation on
either directly on the grid function (somewhat useful for
implementation), or as a matrix operation (useful for analysis).
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Linear Iterative Schemes
Jacobi, Gauss-Seidel, (S)SOR for the Discrete 5-point Laplacian
Preconditioning

Linear Iterative Schemes ∇2
h5

We restate the Jacobi, Gauss-Seidel, and SOR iterations for

Ax̄ = b̄.

It is useful to think of A in terms of its diagonal, strictly lower
triangular, and strictly upper triangular parts, i.e.

A = D − L− U.

If we consider Dirichlet boundary conditions, then we enumerate
the interior points (0 ≤ i < nx , 0 ≤ j < ny ), and have

A(i+nx ·j),(i+nx ·j) = 1, A(i+nx ·j),((i±1)+nx ·(j±1)) = −1

4
,

when the ((i ± 1) + nx · (j ± 1))-elements refer to points that are
neighbors of (xi , yj), i.e. non-boundary points.
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The Discrete Laplacian Rectangular Grid
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Figure: [Left] The Matrix A = I− U− L corresponding to the discrete 5-point Laplacian
on a grid with 6× 6 interior points and Dirichlet boundary conditions; [Right] The Matrix
A = I−U−L corresponding to the discrete compact 9-point Laplacian on a grid with 6× 6
interior points and Dirichlet boundary conditions;
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Linear Iterative Schemes
Jacobi, Gauss-Seidel, (S)SOR for the Discrete 5-point Laplacian
Preconditioning

Jacobi, Gauss-Seidel, and SOR (5-Point Laplacian)

In terms of these matrix-splittings, we have

Jacobi
D x̄k+1 = (L+ U)x̄k + b̄;

Gauss-Seidel
(D − L)x̄k+1 = U x̄k + b̄;

SOR (
1

ω
D − L

)
x̄k+1 =

(
1− ω

ω
D + U

)
x̄k + b̄.

The methods are convergent since the iteration matrices

MJ = D−1(L+ U), MGS = (D − L)−1U, MSOR =

(
1

ω
D − L

)−1 (1− ω

ω
D + U

)

have spectral radii strictly less than 1 (for ω ∈ (0, 2)).
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Convergence of Jacobi and Gauss-Seidel Definitions-1

Definition (Diagonal Dominance)

A matrix is diagonally dominant if

∑

j 6=i

|aij | ≤ |aii |

for each row i . A row is strictly diagonally dominant of the
inequality holds strictly and a matrix is strictly diagonally dominant
if each row is strictly diagonally dominant.

This definition is relevant to our discussion since many schemes for
elliptic problems give rise to diagonally dominant matrices; the 5-
and 9-point Laplacians are two examples.
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Linear Iterative Schemes
Jacobi, Gauss-Seidel, (S)SOR for the Discrete 5-point Laplacian
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Convergence of Jacobi and Gauss-Seidel Definitions-2

Definition (Matrix Permutation)

The permutation of a matrix is the simultaneous permutation of
the rows and columns of the matrix, i.e. aij → aσ(i),σ(j).

Definition (Reducible Matrix)

A matrix is reducible if there is a permutation σ under which A has
the structure [

A1 0
A12 A2

]

where A1 and A2 are square matrices. A matrix is irreducible if it
is not reducible.

Peter Blomgren, 〈blomgren.peter@gmail.com〉 Elliptic Equations, Iterative Schemes — (8/21)



Linear Iterative Schemes
Jacobi, Gauss-Seidel, (S)SOR for the Discrete 5-point Laplacian
Preconditioning

Convergence of Jacobi and Gauss-Seidel Result

We can perform the Jacobi and Gauss-Seidel iterative methods to
a general linear system Ax̄ = b̄, where we express the matrix A in
the form A = D − L− U:

x̄k+1 = D−1((D − A)x̄k + b̄) = (I − D−1A)x̄k − D−1b̄ Jacobi

x̄k+1 = (D − L)−1(U x̄k + b̄) Gauss-Seidel

We notice that the diagonal dominance of a matrix is unaffected
by simultaneous row- and column-permutations.

The Gauss-Seidel method is dependent on permutations of the
matrix, whereas the Jacobi method is not.

Theorem

If A is an irreducibly diagonally dominant matrix, then the Jacobi
and Gauss-Seidel methods are convergent.
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Successive Over-Relaxation (SOR) 1 of 4

Without going into details, we summarize some key results for the SOR
iteration applied to the finite difference discretization of Laplace’s
equation in two dimensions using the 5-point Laplacian

(
1

ω
D − L

)
x̄k+1 =

(
1− ω

ω
D + U

)
x̄k + b̄.

The non-zero eigenvalues λ of MSOR =
(
1
ωD − L

)−1 ( 1−ω
ω D + U

)
are

related to the eigenvalues µ of MJac = D−1(L+ U), by a quadratic
equation in

√
λ

λ+ ω − 1

ωλ1/2
= µ.

From this relation it can be shown that we must require

0 < ω < 2,

in order for ρ(MSOR) < 1.
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Linear Iterative Schemes
Jacobi, Gauss-Seidel, (S)SOR for the Discrete 5-point Laplacian
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Successive Over-Relaxation (SOR) 2 of 4

Minimizing ρ(MSOR) with respect to ω gives

ω∗ =
2

1 +
√

1− cos2(π/N)
,

where the resulting optimal spectral radius

ρ∗ = ω∗ − 1 ≈ 1− 2π

N
,

is a dramatic improvement over Jacobi/Gauss-Seidel:
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Successive Over-Relaxation (SOR) 3 of 4

Comparison of spectral radii as a function of the problem size:

2D — 5-Point Laplacian
n n2 ρ(MJ) ρ(MGS) ρ(MSOR∗)
8 64 0.9397 0.8830 0.6460
16 256 0.9830 0.9662 0.7698
32 1024 0.9955 0.9910 0.8619
64 4096 0.9988 0.9977 0.9221
96 9216 0.9995 0.9990 0.9455

ω∗ =
2

1 +
√
1− cos2(π/n)
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Successive Over-Relaxation (SOR) 4 of 4

It is possible to quantify how many iterations are necessary in order
to achieve a prescribed error tolerance; given the spectral radius ρ,
we need ρk ≈ ǫ in order to reduce the error by a factor ǫ.

From this, we get

kGS ≈
N2

π2
log(ǫ−1)

k∗SOR ≈ N

π2
log(ǫ−1).

Each iteration requires O
(
N2

)
operations, hence the overall work,

which should be compared with O
(
N6

)
for Gaussian Elimination, is

WGS ≈
N4

π2
log(ǫ−1)

W ∗
SOR ≈ N3

π2
log(ǫ−1).
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Linear Iterative Schemes
Jacobi, Gauss-Seidel, (S)SOR for the Discrete 5-point Laplacian
Preconditioning

5-Point Laplacian  9-point Laplacian  SPD Matrices

Unfortunately, the analysis which leads us to an exact expression
for the optimal ω for the SOR iteration corresponding to the
5-point Laplacian is quite a bit messier for the fourth order
accurate 9-point Laplacian (see next slide).

However, the corresponding matrix is symmetric A = AT and
positive definite λ(A) > 0, and there are many useful results for
this class of matrices, e.g.

Theorem

If A is symmetric positive definite, then the iterative method
B x̄k+1 = C x̄k + b̄ based on the splitting A = B − C is convergent
if

Re(B) >
1

2
A

or, equivalently, that BT + C is SPD (BT + C > 0).
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A Note on the 9-Point Laplacian

There are some results for the optimal relaxation parameter ω for the
9-Point Laplacian:

[Garabadian-1956] “Estimation of the Relaxation Factor for
Small Mesh Size.” Mathematical Tables and Other Aids to
Computation Vol. 10, No. 56 (Oct., 1956), pp. 183-185.

ω∗
1 ≈ 2− 2.04πh, ρ∗1 ≈ 1− 2.35πh

[Adams-LeVeque-Young-1988] “Analysis of the SOR Iteration
for the 9-Point Laplacian.” SIAM Journal on Numerical Analysis
Vol. 25, No. 5 (Oct., 1988), pp. 1156-1180.

ω∗
2 ≈ 2− 2.116πh, ρ∗2 ≈ 1− 1.791πh

the paper also explores the effect of different orderings of the grid
points.
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Example #1: SOR for a General Symmetric Ax̄ = b̄

The SOR iteration applied to a symmetric matrix of the form

A = D − L− LT , (D > 0)

is the iteration B x̄k+1 = C x̄k + b̄ where

B =
1

ω
D − L, C =

1− ω

ω
D + LT ,

and using the second form of the theorem, we have

BT + C =
2− ω

ω
D,

which is positive definite as long as ω ∈ (0, 2). Hence the SOR
iteration is convergent ∀ω ∈ (0, 2).
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Example #2: Symmetric SOR

Symmetric SOR (SSOR) is the point SOR scheme applied with a
forward and backward sweep. Described as a matrix splitting,
SSOR is the iteration B x̄k+1 = C x̄k + b̄ where

B =
ω

2− ω

(
1

ω
D − L

)(
1

ω
D − LT

)
,

C =
ω

2− ω

(
1− ω

ω
D + L

)(
1− ω

ω
D + LT

)
,

Since both B and C are symmetric, we apply the second form of
the theorem, and with a little bit of algebra we get

B + C =
2− ω

2ω
D +

ω

2− ω

(
1√
2
D −

√
2 L

)(
1√
2
D −

√
2 L

)T

,

which is symmetric positive definite (and therefore the iteration is
convergent) for 0 < ω < 2.
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Jacobi, Gauss-Seidel, (S)SOR for the Discrete 5-point Laplacian
Preconditioning

SSOR vs. SOR
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Figure: Surprisingly, the spectral radius for the SSOR iteration, even when
optimal, is not as favorable as the one for the SOR iteration.
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Linear Iterative Schemes
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General Framework: Preconditioning 1 of 3

We “massage” the iterative scheme B x̄k+1 = C x̄k + b̄, where
A = B − C , to the equivalent form

x̄k+1 = B−1C︸ ︷︷ ︸
G

x̄k + B−1b̄︸ ︷︷ ︸
f̄

,

where
G = B−1C = B−1(B − A) = I − B−1A.

The iteration x̄k+1 = G x̄k + f̄, can be viewed as a technique for
solving the preconditioned system

(I − G )x̄ = f̄ ⇔ B−1Ax̄ = B−1b̄,

where B is the preconditioner (B ≈ A, and the effect of B−1

easily computed.)
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Preconditioning 2 of 3

Finding good preconditioners is an art/science in itself; here we
have talked about the Jacobi, Gauss-Seidel, SOR, and SSOR
preconditioners.

The general goals of a preconditioner B ≈ A is that

• B captures most of the “action” of A:
this means ρ(B−1(B − A)) ≪ 1 ⇔ B−1A ≈ I .
The theorem on slide 14 quantifies the minimal amount of
“action” B must capture for an SPD matrix A.

• The effect of B−1 should be significantly easier to compute
than the effect of A−1.

Since the Thomas Algorithm for tri-diagonal matrices solves
T v̄ = b̄ in O (n) operations, letting B be the tri-diagonal part of A
is sometimes a useful preconditioner. This is equivalent to the Line
SOR approach described in Strikwerda (p.359).
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Preconditioning 3 of 3

Many of our “old” algorithms, e.g. the Peaceman-Rachford
alternating direction implicit (ADI) scheme, can be viewed from a
matrix-centric point of view as a preconditioned iteration with
tri-diagonal preconditioners.

The alternating direction part corresponds to the
numbering-order of the grid points:

• When we solve in the x-direction, we enumerate the grid-points
along the x-axis first, so that the neighboring points in that
direction correspond to the first super- and sub-diagonal
elements in the matrix.

• When we solve in the y -direction, we enumerate the grid-points
along the y -axis first, so that the neighboring points in that di-
rection correspond to the first super- and sub-diagonal elements
in the matrix.
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