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Recap Linear Iterative Schemes

Last Time: Linear Iterative Schemes

We looked at the Jacobi, Gauss-Seidel, SOR, and SSOR iterations
applied to linear systems Ax̄ = b̄, originating from the 5-point
Laplacian.

We quantified under what circumstances we can guarantee
convergence of these iterations (J&GS: irreducibly diagonally
dominant matrices, (S)SOR: ω ∈ (0, 2)), and discussed the
convergence rates.

The discussion was extended to general linear systems, where A
may be associated with the 9-point Laplacian, or something
completely different. In this discussion we introduced
preconditioning, where we find a matrix M ≈ A, which is much
easier to invert than A itself, and we leverage this in order to
generate an efficient iterative solver.
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Another Point of View: Optimization

We consider a system of linear equations Ax̄ = b̄, where A is
symmetric positive definite.

We define

F (ȳ) =
1

2
(ȳ − x̄)TA(ȳ − x̄),

and note that since A is positive definite F (ȳ) ≥ 0, and
F (ȳ) = 0 ⇔ ȳ = x̄. Further, we can define

E (ȳ) = F (ȳ)− F (0̄) =
1

2
ȳTAȳ − ȳT b̄,

which has a unique minimum at the solution of Ax̄ = b̄.

Now the gradient of E (ȳ) describes the direction of largest increase

G (ȳ) = ∇E (ȳ) = Aȳ − b̄ = − r̄(ȳ)︸︷︷︸
residual

.
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Optimization  Steepest Descent

Since the gradient points in the direction of steepest ascent, the residual
points in the direction of steepest descent.

Given an approximation (guess) x̄k to the solution of Ax̄ = b̄, we find a
better approximation by searching in the steepest descent direction

x̄k+1 = x̄k + αk r̄
k , where r̄k = b̄− Ax̄k ,

and we select αk so that E (x̄k + αk r̄k) is minimized:

E(x̄k+1) = E(x̄k + αk r̄
k)

=
1

2
[x̄k ]TAx̄k + αk [̄r

k ]TAx̄k +
1

2
α2
k [̄r

k ]TAr̄k − [x̄k ]T b̄− αk [̄r
k ]T b̄

= E(x̄k )− αk [̄r
k ]T r̄k +

1

2
α2
k [̄r

k ]TAr̄k .

Setting ∂E (x̄k + αk r̄k)/∂αk = 0 gives us

αk =
[̄rk ]T r̄k

[̄rk ]TAr̄k
=

‖̄rk‖22
[̄rk ]TAr̄k

.
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Steepest Descent 1 of 3

The steepest descent algorithm is given by x̄0 = 0̄, r̄0 = b̄:

αk =
‖̄rk‖2

[̄rk ]TAr̄k

x̄k+1 = x̄k + αk r̄
k

r̄k+1 = r̄k − αkAr̄
k.

Where the update formula for the residual comes from

x̄k+1 = x̄k + αk r̄
k

Ax̄k+1 = Ax̄k + αkAr̄
k

b̄− Ax̄k+1 = b̄− Ax̄k − αkAr̄
k

r̄k+1 = r̄k − αkAr̄
k .
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Steepest Descent 2 of 3

We note that the steepest descent algorithm only requires one
matrix-vector product Ar̄k and two vector-vector inner products
(‖̄rk‖2, [̄rk ]TAr̄k) per iteration.
When A is sparse the matrix-vector product can be implemented in
O (N) operations.

Theorem

If A is a positive definite matrix for which ATA−1 is also positive
definite, then the steepest descent algorithm converges to the
unique solution x̄∗ = A−1b̄ for any initial x̄0.

Theorem

If A is SPD, then the steepest descent algorithm converges to the
unique solution x̄∗ = A−1b̄ for any initial x̄0.
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Steepest Descent 3 of 3

It turns out, maybe somewhat counter-intuitively, that the steepest
descent algorithm converges very slowly unless A is a
(near-)multiple of the identity matrix.

The residuals tend to oscillate so that r̄k+2 points in the same
direction as r̄k , and very little progress is made.

Next we quantify this convergence rate, and discuss the conjugate
gradient method which is an “accelerated version of steepest
descent.”
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Convergence Rate for Steepest Descent

Theorem (Convergence Rate for Steepest Descent)

If A is a symmetric positive definite matrix whose eigenvalues lie in the
interval [a, b], then the error vector ēk for the steepest descent method
satisfies

[ēk ]TAēk ≤
[
b − a

b + a

]2k
[ē0]TAē0 ≡

[
κ− 1

κ+ 1

]2k
[ē0]TAē0

The larger the interval [a, b], i.e. the more ill-conditioned A is, the slower
the convergence rate we get.

The condition number κ of a matrix is defined as

κ =
b

a
=

|λ|max

|λ|min

,

it is an intrinsic measure of difficult the matrix is to invert.
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The Steepest Descent Method: Zig-Zagging

The “zig-zagging” (p̄k+2 ≈ p̄k) is what causes the steepest
descent method to slow down. The amount of zig-zagging is
directly proportional to the ratio |λ|max/|λ|min, or more generally for
a non-square matrix A, σmax/σmin, where σν are the singular values
of A.
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Figure: Illustration of the “zig-zagging” of the search directions in the steepest descent
algorithm. If κ = 1, then all the level curves of ‖Ax̄ − b̄‖ = c are circles (hyper-spheres
in Rn) and the steepest descent direction points straight in toward the central point. The
more elongated the ellipse becomes, the more zig-zagging we get...
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The Conjugate Gradient Method 1 of 5

The Conjugate Gradient method can be viewed as an acceleration
of the steepest descent method, in which we by adding a little bit
of “memory” to the algorithm can avoid the zig-zagging.

We consider

x̄k+1 = x̄k + αk

[
r̄k + γk (x̄

k − x̄k−1)︸ ︷︷ ︸
αk−1p̄k−1

]

︸ ︷︷ ︸
p̄k

,

clearly, if γk ≡ 0, we can recover the steepest descent algorithm.

We form the new search direction p̄k as a linear combination of the
steepest descent direction r̄k and the previous search direction
p̄k−1, i.e

p̄k = r̄k + βk−1p̄
k−1.
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The Conjugate Gradient Method 2 of 5

The conjugate gradient iteration involves updates for the
approximate solution x̄, the residual r̄, and the search direction p̄:

x̄k+1 = x̄k + αk p̄
k ,

r̄k+1 = r̄k − αkAp̄
k ,

p̄k+1 = r̄k+1 + βk p̄
k .

Where we want to select αk and βk in an optimal way. A
minimization of the error E (x̄k+1) with respect to α (just as in the
steepest descent case), and a similar analysis of E (x̄k+1) with
respect to β gives

αk =
‖̄rk‖22

[p̄k ]TAp̄k
, βk = − [̄rk+1]TAp̄k

[p̄k ]TAp̄k
≡ ‖̄rk+1‖22

‖̄rk‖22
.
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The Conjugate Gradient Method 3 of 5

Algorithm: The Conjugate Gradient Method

p̄0 = r̄0 = b̄− Ax̄0, k = 0

while ( ‖̄rk‖ > ǫtol‖̄r0‖ )

αk =
‖̄rk‖22

[p̄k ]TAp̄k

x̄k+1 = x̄k + αk p̄
k

r̄k+1 = r̄k − αkAp̄
k

βk =
‖̄rk+1‖22
‖̄rk‖22

p̄k+1 = r̄k+1 + βk p̄
k

endwhile ( k := k + 1 )
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The Conjugate Gradient Method 4 of 5

The CG method only requires one matrix-vector product Ap̄k , and
two vector-vector inner products [p̄k ]TAp̄k and ‖̄rk‖22 per iteration,
hence if A has O (N) non-zero entries, the work/iteration is O (N).

The CG gets its name (somewhat incorrectly, it should be “the
A-conjugate search-direction method”) from the fact that the
generated residuals are orthogonal, and the search directions are
A-conjugate, i.e.

[̄rk ]T r̄j = [p̄k ]TAp̄j = 0, for k 6= j .

A direct corollary of these (easily checked) facts, is

Corollary

If A is an N × N symmetric positive definite matrix, then the CG
algorithm converges in at most N steps.
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The Conjugate Gradient Method 5 of 5

The N-step termination theorem tells us that for the 5-point Laplacian
on an N × N grid we need at most

WCG = 5(N × N)︸ ︷︷ ︸
Matrix Entries

·N × N︸ ︷︷ ︸
iterations

= O
(
N4

)
,

operations to compute the exact solution to Ax̄ = b̄. This may not seem
so impressive, since optimal SOR does a better job

W ∗
SOR ≈ N3

π2
log(ǫ−1) = O

(
N3

)
.

However, in practice the iterates x̄k generated by the CG-iteration
converge to x̄ very rapidly, and the iteration can be stopped for
k ≪ N × N iterations. Applied to the 5-point Laplacian, the CG iteration
and optimal SOR both require ∼ N log(ǫ−1) iterations to reach a
specified tolerance. CG has the advantage over SOR in that (i) there is
no parameter (ω) which must be optimally chosen; further (ii) the
CG-iteration can be accelerated further by preconditioning PCG(M).
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Convergence Rate for the Conjugate Gradient Method

Theorem (Convergence Rate for Conjugate Gradient)

If A is a symmetric positive definite matrix whose eigenvalues lie in
the interval [a, b], then the error vector ēk for the steepest descent
method satisfies

[ēk ]TAēk ≤
[√

b −√
a√

b +
√
a

]2k

[ē0]TAē0 ≡
[√

κ− 1√
κ+ 1

]2k
[ē0]TAē0.
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Conjugate Gradient vs. Steepest Descent 1 of 2
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Figure: The convergence multipliers mSD =
[
κ−1
κ+1

]2
, and mCG =

[√
κ−

√
1√

κ+
√
1

]2
.
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Conjugate Gradient vs. Steepest Descent 2 of 2
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Figure: The number of iterations necessary to reduce the initial error by a factor of 10−8.
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GS vs. SOR vs. CG 1 of 2

n n2 κ(A) GS SOR∗ CG

8 64 47 252 65 11
16 256 169 837 121 27
32 1,024 641 2,870 223 52
64 4,096 2,489 9,983 414 98
128 16,384 9,807 34,706 777 192
256 65,536 38,926 — 1,473 370
512 262,144 155,103 — 2,813 715

Table: Number of iterations needed to achieve 10−8 relative update.
5-point Laplacian ∇2

5pt in 2D discretized on an n × n grid  n2 × n2

matrix, with ∼ 5n2 non-zero elements.
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GS vs. SOR vs. CG 2 of 2

n n2 κ(A) GS SOR∗ CG

8 64 47 — 71 10
16 256 169 — 136 28
32 1,024 641 — 261 59
64 4,096 2,489 — 504 119

128 16,384 9,807 — 984 239
256 65,536 38,926 — 1,938 470
512 262,144 155,103 — 3,844 941

Table: Number of iterations needed to achieve 10−8 residual reduction. 5-point
Laplacian ∇2

5pt in 2D discretized on an n × n grid  n2 × n2 matrix, with ∼ 5n2

non-zero elements.

Bottom Line: Even in the “homework case” where the optimal SOR
parameter is known, the Conjugate Gradient approach is better.
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Speeding Up Conjugate Gradient — PCG(M)

The conjugate gradient algorithm is not the end of the story (it is
just barely the end of the beginning). By combining the
CG-algorithm with the idea of preconditioning (M ≈ A, and M
easily invertible) the Preconditioned CG algorithm can be derived.

Further, the CG-method can be extended to work for
non-symmetric matrices as well:

Symmetry Linear System Eigenvalue Problem
Ax̄ = b̄ Ax̄ = λx̄

A = A∗ CG Lanczos

GMRES
A 6= A∗ CGNE / CGNR Arnoldi

BiCG, etc...
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Finite Differences vs. Finite Elements

This ends our overview of finite difference schemes for hyperbolic,
parabolic, and elliptic problems. We have seen quite a few tools useful
for both analysis and implementation of these schemes...

More Topics...

Spectral Methods

Mimetic Methods (a different view of the Finite Difference problem)

Finite Element Methods — a different approach to approximation.

The FEM formulation is better suited for complex domains,
and includes local error estimates which help us locally improve
the solution exactly where these errors are large.
The biggest disadvantage, from a pedagogical point of view, is
that whereas FD methods are quite straight-forward to
implement, setting up a meaningful FEM-solver requires more
“technology.” There are some nice ($$$) commercial packages
available (e.g. Comsol Multiphysics: http://www.comsol.com/).
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