

San Diego Stat University

- (3/22)

We looked at the Jacobi, Gauss-Seidel, SOR, and SSOR iterations applied to linear systems $A\bar{\mathbf{x}} = \bar{\mathbf{b}}$, originating from the 5-point Laplacian.

We quantified under what circumstances we can guarantee convergence of these iterations (J&GS: irreducibly diagonally dominant matrices, (S)SOR: $\omega \in (0, 2)$), and discussed the convergence rates.

The discussion was extended to general linear systems, where A may be associated with the 9-point Laplacian, or something completely different. In this discussion we introduced **preconditioning**, where we find a matrix $M \approx A$, which is much easier to invert than A itself, and we leverage this in order to generate an efficient iterative solver.

We consider a system of linear equations $A\overline{\mathbf{x}} = \overline{\mathbf{b}}$, where A is symmetric positive definite.

We define

$$F(\mathbf{\bar{y}}) = \frac{1}{2}(\mathbf{\bar{y}} - \mathbf{\bar{x}})^T A(\mathbf{\bar{y}} - \mathbf{\bar{x}}),$$

and note that since A is positive definite $F(\mathbf{\bar{y}}) \ge 0$, and $F(\mathbf{\bar{y}}) = 0 \Leftrightarrow \mathbf{\bar{y}} = \mathbf{\bar{x}}$. Further, we can define

$$E(\mathbf{\bar{y}}) = F(\mathbf{\bar{y}}) - F(\mathbf{\bar{0}}) = \frac{1}{2}\mathbf{\bar{y}}^{T}A\mathbf{\bar{y}} - \mathbf{\bar{y}}^{T}\mathbf{\bar{b}},$$

which has a unique minimum at the solution of $A\overline{\mathbf{x}} = \overline{\mathbf{b}}$.

Now the gradient of $E(\mathbf{\bar{y}})$ describes the direction of largest increase

$$G(\mathbf{\bar{y}}) = \nabla E(\mathbf{\bar{y}}) = A\mathbf{\bar{y}} - \mathbf{\bar{b}} = -\underbrace{\mathbf{\bar{r}}(\mathbf{\bar{y}})}_{\text{residual}}.$$

SAN DIEGO ST

A Diff	erent Point	t of View
Beyond	Conjugate	Gradient

 $A\bar{\mathbf{x}} = \bar{\mathbf{b}}$ as an Optimization Problem **Steepest Descent** Conjugate Gradient

Optimization \rightsquigarrow Steepest Descent

Since the gradient points in the direction of steepest ascent, the residual points in the direction of steepest descent.

Given an approximation (guess) $\bar{\mathbf{x}}^k$ to the solution of $A\bar{\mathbf{x}} = \bar{\mathbf{b}}$, we find a better approximation by searching in the steepest descent direction

$$\bar{\mathbf{x}}^{k+1} = \bar{\mathbf{x}}^k + \alpha_k \bar{\mathbf{r}}^k, \quad \text{where } \bar{\mathbf{r}}^k = \bar{\mathbf{b}} - A \bar{\mathbf{x}}^k,$$

and we select α_k so that $E(\mathbf{\bar{x}}^k + \alpha_k \mathbf{\bar{r}}^k)$ is minimized:

$$\begin{split} E(\bar{\mathbf{x}}^{k+1}) &= E(\bar{\mathbf{x}}^k + \alpha_k \bar{\mathbf{r}}^k) \\ &= \frac{1}{2} [\bar{\mathbf{x}}^k]^T A \bar{\mathbf{x}}^k + \alpha_k [\bar{\mathbf{r}}^k]^T A \bar{\mathbf{x}}^k + \frac{1}{2} \alpha_k^2 [\bar{\mathbf{r}}^k]^T A \bar{\mathbf{r}}^k - [\bar{\mathbf{x}}^k]^T \bar{\mathbf{b}} - \alpha_k [\bar{\mathbf{r}}^k]^T \bar{\mathbf{b}} \\ &= E(\bar{\mathbf{x}}^k) - \alpha_k [\bar{\mathbf{r}}^k]^T \bar{\mathbf{r}}^k + \frac{1}{2} \alpha_k^2 [\bar{\mathbf{r}}^k]^T A \bar{\mathbf{r}}^k. \end{split}$$

Setting $\partial E(\mathbf{\bar{x}}^k + \alpha_k \mathbf{\bar{r}}^k) / \partial \alpha_k = 0$ gives us

$[\mathbf{\bar{r}}^k]^T \mathbf{\bar{r}}^k$	$\ \mathbf{\bar{r}}^{k}\ _{2}^{2}$	
$\alpha_k = \overline{[\mathbf{\bar{r}}^k]^T A \mathbf{\bar{r}}^k}$	$-\overline{[\mathbf{\bar{r}}^k]^T A \mathbf{\bar{r}}^k}$.	

A Different Point of View Beyond Conjugate Gradient $A\bar{x} = \bar{b}$ as an Optimization Problem Steepest Descent Conjugate Gradient

Steepest Descent

The steepest descent algorithm is given by $\bar{\mathbf{x}}^0 = \bar{\mathbf{0}}$, $\bar{\mathbf{r}}^0 = \bar{\mathbf{b}}$:

$$\alpha_{k} = \frac{\|\mathbf{\bar{r}}^{k}\|^{2}}{[\mathbf{\bar{r}}^{k}]^{T}\mathbf{A}\mathbf{\bar{r}}^{k}}$$
$$\mathbf{\bar{x}}^{k+1} = \mathbf{\bar{x}}^{k} + \alpha_{k}\mathbf{\bar{r}}^{k}$$
$$\mathbf{\bar{r}}^{k+1} = \mathbf{\bar{r}}^{k} - \alpha_{k}\mathbf{A}\mathbf{\bar{r}}^{k}$$

Where the update formula for the residual comes from

 $\begin{aligned} \mathbf{\bar{x}}^{k+1} &= \mathbf{\bar{x}}^k + \alpha_k \mathbf{\bar{r}}^k \\ A \mathbf{\bar{x}}^{k+1} &= A \mathbf{\bar{x}}^k + \alpha_k A \mathbf{\bar{r}}^k \\ \mathbf{\bar{b}} - A \mathbf{\bar{x}}^{k+1} &= \mathbf{\bar{b}} - A \mathbf{\bar{x}}^k - \alpha_k A \mathbf{\bar{r}}^k \\ \mathbf{\bar{r}}^{k+1} &= \mathbf{\bar{r}}^k - \alpha_k A \mathbf{\bar{r}}^k. \end{aligned}$

It turns out, maybe somewhat counter-intuitively, that the steepest

Next we quantify this convergence rate, and discuss the **conjugate**

The residuals tend to oscillate so that \overline{r}^{k+2} points in the same

gradient method which is an "accelerated version of steepest

descent algorithm converges very slowly unless A is a

direction as $\mathbf{\bar{r}}^k$, and very little progress is made.

(near-)multiple of the identity matrix.

SAN DIEGO

1 of 3

Peter Blomgren, $\langle \texttt{blomgren.peter@gmail.com} \rangle$	Steepest Descent and Conjugate Gradient	— (5/22)	Peter Blomgren, (blomgren.peter@gmail.com)	Steepest Descent and Conjugate Gradient	— (6/22)
A Different Point of View Beyond Conjugate Gradient	$A\bar{\mathbf{x}} = \bar{\mathbf{b}}$ as an Optimization Problem Steepest Descent Conjugate Gradient		A Different Point of View Beyond Conjugate Gradient	$A\bar{\mathbf{x}} = \bar{\mathbf{b}}$ as an Optimization Problem Steepest Descent Conjugate Gradient	
Steepest Descent		2 of 3	Steepest Descent		3 of 3

descent."

SAN DIEGO

- (7/22)

IEGO STAT

We note that the steepest descent algorithm only requires one matrix-vector product $A\bar{\mathbf{r}}^k$ and two vector-vector inner products $(\|\bar{\mathbf{r}}^k\|^2, [\bar{\mathbf{r}}^k]^T \mathbf{A}\bar{\mathbf{r}}^k)$ per iteration.

When A is sparse the matrix-vector product can be implemented in $\mathcal{O}(N)$ operations.

Theorem

If A is a positive definite matrix for which $A^T A^{-1}$ is also positive definite, then the steepest descent algorithm converges to the unique solution $\mathbf{\bar{x}}^* = A^{-1}\mathbf{\bar{b}}$ for any initial $\mathbf{\bar{x}}^0$.

Theorem

If A is SPD, then the steepest descent algorithm converges to the unique solution $\bar{\mathbf{x}}^* = A^{-1}\bar{\mathbf{b}}$ for any initial $\bar{\mathbf{x}}^0$.

A Different Point of View **Bevond Conjugate Gradient**

 $A\bar{\mathbf{x}} = \bar{\mathbf{b}}$ as an Optimization Problem Steepest Descent **Conjugate Gradient**

Convergence Rate for Steepest Descent

Theorem (Convergence Rate for Steepest Descent)

If A is a symmetric positive definite matrix whose eigenvalues lie in the interval [a, b], then the error vector $\mathbf{\bar{e}}^k$ for the steepest descent method satisfies

$$[\mathbf{\bar{e}}^{k}]^{\mathsf{T}} A \mathbf{\bar{e}}^{k} \leq \left[\frac{b-a}{b+a}\right]^{2k} [\mathbf{\bar{e}}^{0}]^{\mathsf{T}} A \mathbf{\bar{e}}^{0} \equiv \left[\frac{\kappa-1}{\kappa+1}\right]^{2k} [\mathbf{\bar{e}}^{0}]^{\mathsf{T}} A \mathbf{\bar{e}}^{0}$$

The larger the interval [a, b], *i.e.* the more ill-conditioned A is, the slower the convergence rate we get.

The **condition number** κ of a matrix is defined as

$$\kappa = \frac{b}{a} = \frac{|\lambda|_{\max}}{|\lambda|_{\min}},$$

it is an intrinsic measure of difficult the matrix is to invert.

Peter Blomgren, $\langle \texttt{blomgren.peter@gmail.com} \rangle$	Steepest Descent and Conjugat	
A Different Point of View Beyond Conjugate Gradient	Ax = b as an Optimization Pro Steepest Descent Conjugate Gradient	

The Conjugate Gradient Method

The Conjugate Gradient method can be viewed as an acceleration of the steepest descent method, in which we by adding a little bit of "memory" to the algorithm can avoid the zig-zagging.

We consider

$$\bar{\mathbf{x}}^{k+1} = \bar{\mathbf{x}}^k + \alpha_k \underbrace{\left[\bar{\mathbf{r}}^k + \gamma_k \underbrace{(\bar{\mathbf{x}}^k - \bar{\mathbf{x}}^{k-1})}_{\alpha_{k-1}\bar{\mathbf{p}}^{k-1}}\right]}_{\bar{\mathbf{p}}^k},$$

clearly, if $\gamma_k \equiv 0$, we can recover the steepest descent algorithm.

We form the new search direction $\mathbf{\bar{p}}^k$ as a linear combination of the steepest descent direction $\mathbf{\bar{r}}^k$ and the previous search direction $\mathbf{\bar{p}}^{k-1}$, *i.e* -1

$$\mathbf{\bar{p}}^{k} = \mathbf{\bar{r}}^{k} + \beta_{k-1}\mathbf{\bar{p}}^{k-1}$$

A Different Point of View **Bevond Conjugate Gradient**

 $A\bar{\mathbf{x}} = \bar{\mathbf{b}}$ as an Optimization Problem Steepest Descent **Conjugate Gradient**

The Steepest Descent Method: Zig-Zagging

The "zig-zagging" ($\mathbf{\bar{p}}^{k+2} \approx \mathbf{\bar{p}}^{k}$) is what causes the steepest descent method to slow down. The amount of zig-zagging is directly proportional to the ratio $|\lambda|_{max}/|\lambda|_{min}$, or more generally for a non-square matrix A, $\sigma_{max}/\sigma_{min}$, where σ_{ν} are the singular values of A.

Figure: Illustration of the "zig-zagging" of the search directions in the steepest descent algorithm. If $\kappa = 1$, then all the level curves of $||A\bar{\mathbf{x}} - \bar{\mathbf{b}}|| = c$ are circles (hyper-spheres in \mathbb{R}^n) and the steepest descent direction points straight in toward the central point. The more elongated the ellipse becomes, the more zig-zagging we get... SAN DIEGO ST/ UNIVERSITY

Steepest Descent and Conjugate Gradient	— (9/22)	Peter Blomgren, $\langle \texttt{blomgren.peter@gmail.com} \rangle$	Steepest Descent and Conjugate Gradient	— (10/22)
$A\overline{x} = \overline{b}$ as an Optimization Problem Steepest Descent Conjugate Gradient		A Different Point of View Beyond Conjugate Gradient	$A\bar{x} = \bar{b}$ as an Optimization Problem Steepest Descent Conjugate Gradient	
	1 of 5	The Conjugate Gradient Method		2 of 5

ß

SAN DIEGO STATE

Êı

SAN DIEGO STA UNIVERSITY

-(11/22)

The conjugate gradient iteration involves updates for the approximate solution $\bar{\mathbf{x}}$, the residual $\bar{\mathbf{r}}$, and the search direction $\bar{\mathbf{p}}$:

$$\begin{aligned} \bar{\mathbf{x}}^{k+1} &= \bar{\mathbf{x}}^k + \alpha_k \bar{\mathbf{p}}^k, \\ \bar{\mathbf{r}}^{k+1} &= \bar{\mathbf{r}}^k - \alpha_k \mathcal{A} \bar{\mathbf{p}}^k, \\ \bar{\mathbf{p}}^{k+1} &= \bar{\mathbf{r}}^{k+1} + \beta_k \bar{\mathbf{p}}^k. \end{aligned}$$

Where we want to select α_k and β_k in an optimal way. A minimization of the error $E(\bar{\mathbf{x}}^{k+1})$ with respect to α (just as in the steepest descent case), and a similar analysis of $E(\bar{\mathbf{x}}^{k+1})$ with respect to β gives

$$\alpha_{k} = \frac{\|\overline{\mathbf{r}}^{k}\|_{2}^{2}}{[\overline{\mathbf{p}}^{k}]^{T} A \overline{\mathbf{p}}^{k}}, \quad \beta_{k} = -\frac{[\overline{\mathbf{r}}^{k+1}]^{T} A \overline{\mathbf{p}}^{k}}{[\overline{\mathbf{p}}^{k}]^{T} A \overline{\mathbf{p}}^{k}} \equiv \frac{\|\overline{\mathbf{r}}^{k+1}\|_{2}^{2}}{\|\overline{\mathbf{r}}^{k}\|_{2}^{2}}.$$

Peter Blomgren, (blomgren.peter@gmail.com)

Steepest Descent and Conjugate Gradient - (12/22)

Peter Blomgren,
$$\langle \texttt{blomgren.peter@gmail.com} \rangle$$

Steepest Descent and Conjugate Gradient

A Different Point of View Beyond Conjugate Gradient	$A\overline{x} = \overline{b}$ as an Optimization Problem Steepest Descent Conjugate Gradient		A Different Point of View Beyond Conjugate Gradient	$A\bar{\mathbf{x}}=\bar{\mathbf{b}}$ as an Optimization Problem Steepest Descent Conjugate Gradient
The Conjugate Gradient Method		3 of 5	The Conjugate Gradient Method	4 of 5
Algorithm: The Conjugate Gradie $ar{\mathbf{p}}^0 = ar{\mathbf{r}}^0 = ar{\mathbf{b}} - Aar{\mathbf{x}}^0, \; k = 0$	ent Method		The CG method only requires one two vector-vector inner products hence if A has $\mathcal{O}(N)$ non-zero en	matrix-vector product $A\mathbf{\bar{p}}^k$, and $[\mathbf{\bar{p}}^k]^T A\mathbf{\bar{p}}^k$ and $\ \mathbf{\bar{r}}^k\ _2^2$ per iteration, tries, the work/iteration is $\mathcal{O}(N)$.
while ($\ \overline{\mathbf{r}}^k \ > \epsilon_{tol} \ \overline{\mathbf{r}}^0 \ $) $\alpha_k = \frac{\ \overline{\mathbf{r}}^k \ _2^2}{[\overline{\mathbf{p}}^k]^T A \overline{\mathbf{p}}^k}$ $\overline{\mathbf{x}}^{k+1} = \overline{\mathbf{x}}^k + \alpha_k \overline{\mathbf{p}}^k$			The CG gets its name (somewhat A- conjugate search-direction m generated residuals are orthogona A-conjugate, <i>i.e.</i>	incorrectly, it should be "the nethod") from the fact that the I, and the search directions are
$\mathbf{ar{r}}^{k+1} = \mathbf{ar{r}}^k - lpha_k A \mathbf{ar{p}}^k$			$[\mathbf{ar{r}}^k]^{ op}\mathbf{ar{r}}^j = [\mathbf{ar{p}}^k]^{ op} A \mathbf{ar{p}}$	$\phi^j=0, ext{for } k eq j.$
$\beta_k = \frac{\ \overline{\mathbf{r}}^{k+1}\ _2^2}{\ \overline{\mathbf{r}}^k\ _2^2}$			A direct corollary of these (easily	checked) facts, is
$\bar{\mathbf{p}}^{k+1} = \bar{\mathbf{r}}^{k+1} + \beta_k \bar{\mathbf{p}}^k$			Corollary	1
endwhile ($k := k+1$)			If A is an $N \times N$ symmetric posit algorithm converges in at most N	ive definite matrix, then the CG steps.
Peter Blomgren, $\langle \texttt{blomgren.peter@gmail.com} \rangle$	Steepest Descent and Conjugate Gradient	— (13/22)	Peter Blomgren, <pre> blomgren.peter@gmail.com</pre>	Steepest Descent and Conjugate Gradient — (14/22)
A Different Point of View Beyond Conjugate Gradient	$A\bar{\mathbf{x}}=ar{\mathbf{b}}$ as an Optimization Problem Steepest Descent Conjugate Gradient		A Different Point of View Beyond Conjugate Gradient	$A\bar{\mathbf{x}}=\bar{\mathbf{b}}$ as an Optimization Problem Steepest Descent Conjugate Gradient
The Conjugate Gradient Method		5 of 5	Convergence Rate for the Conjugate	Gradient Method
The <i>N</i> -step termination theorem tel on an $N \times N$ grid we need at most	ls us that for the 5-point Laplacia	an		
$W_{ ext{CG}} = \underbrace{5(N imes N)}_{ ext{Matrix Entries}}$	$\cdot \underbrace{\textbf{\textit{N}} \times \textbf{\textit{N}}}_{\text{iterations}} = \mathcal{O}\left(\textbf{\textit{N}}^{4}\right),$		Theorem (Convergence Rate for C	Conjugate Gradient) ite matrix whose eigenvalues lie in
operations to compute the exact sol so impressive, since optimal SOR do	ution to $A\mathbf{ar{x}}=\mathbf{ar{b}}$. This may not s les a better job	seem	the interval [a, b], then the error method satisfies	vector $\mathbf{\bar{e}}^k$ for the steepest descent
$W^*_{ m SOR}pprox {N^3\over \pi^2}\log$	$\left(\epsilon^{-1} ight)=\mathcal{O}\left(\mathit{N}^{3} ight).$		$\left[\mathbf{\bar{e}}^{k} \right]^{T} A \mathbf{\bar{e}}^{k} \leq \left[\frac{\sqrt{b} - \sqrt{a}}{\sqrt{a}} \right]^{2k} [\mathbf{\bar{e}}^{0}]$	${}^{\mathcal{T}}\mathcal{A}\mathbf{\bar{e}}^{0} \equiv \left[\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right]^{2k} \left[\mathbf{\bar{e}}^{0}\right]^{\mathcal{T}}\mathcal{A}\mathbf{\bar{e}}^{0}.$
However, in practice the iterates $\bar{\mathbf{x}}^{h}$	generated by the CG-iteration		$\left\lfloor \sqrt{b} + \sqrt{a} \right\rfloor$	$\lfloor \sqrt{\kappa} + 1 \rfloor$

— (15/22)

converge to $\bar{\mathbf{x}}$ very rapidly, and the iteration can be stopped for $k \ll N \times N$ iterations. Applied to the 5-point Laplacian, the CG iteration and optimal SOR both require $\sim N \log(\epsilon^{-1})$ iterations to reach a specified tolerance. CG has the advantage over SOR in that (i) there is no parameter (ω) which must be optimally chosen; further (ii) the CG-iteration can be accelerated further by preconditioning PCG(M).

San Diego Stat University

A Different Point of View	Pre
Beyond Conjugate Gradient	Bey

Preconditioning, and Extensions Beyond Finite Differences... A Different Point of View Beyond Conjugate Gradient Preconditioning, and Extensions Beyond Finite Differences...

Speeding Up Conjugate Gradient — PCG(M)

The conjugate gradient algorithm is not the end of the story (it is just barely the end of the beginning). By combining the CG-algorithm with the idea of preconditioning ($M \approx A$, and M easily invertible) the Preconditioned CG algorithm can be derived.

Further, the CG-method can be extended to work for non-symmetric matrices as well:

Symmetry	Linear System	Eigenvalue Problem
	$\mathbf{A}\mathbf{ar{x}}=\mathbf{ar{b}}$	$\mathbf{A}\mathbf{ar{x}}=\lambda\mathbf{ar{x}}$
$\mathbf{A} = \mathbf{A}^*$	CG	Lanczos
$\mathbf{A} \neq \mathbf{A}^*$	GMRES CGNE / CGNR BiCG, etc	Arnoldi

Peter Blomgren, (blomgren.peter@gmail.com) Steepest Descent and Conjugate Gradient

Finite Differences vs. Finite Elements

This ends our overview of finite difference schemes for hyperbolic, parabolic, and elliptic problems. We have seen quite a few tools useful for both analysis and implementation of these schemes...

More Topics...

Ê

SAN DIEGO ST

- (21/22)

- Spectral Methods
- Mimetic Methods (a different view of the Finite Difference problem)
- Finite Element Methods a different approach to approximation.
 - The FEM formulation is better suited for complex domains, and includes local error estimates which help us locally improve the solution exactly where these errors are large.
 - The biggest disadvantage, from a pedagogical point of view, is that whereas FD methods are quite straight-forward to implement, setting up a meaningful FEM-solver requires more "technology." There are some nice (\$\$\$) commercial packages available (*e.g.* Comsol Multiphysics: http://www.comsol.com/).

— (22/22)

Peter Blomgren, {blomgren.peter@gmail.com} Steepest Descent and Conjugate Gradient