Numerical Solutions to PDEs

Lecture Notes #23
Elliptic Equations — Steepest Descent and Conjugate Gradient

Peter Blomgren, \langle blomgren.peter@gmail.com \rangle

Department of Mathematics and Statistics
Dynamical Systems Group
Computational Sciences Research Center

San Diego State University San Diego, CA 92182-7720

http://terminus.sdsu.edu/

Spring 2018

Outline

- Recap
 - Linear Iterative Schemes
- A Different Point of View
 - $A\bar{\mathbf{x}} = \bar{\mathbf{b}}$ as an Optimization Problem
 - Steepest Descent
 - Conjugate Gradient
- Beyond Conjugate Gradient
 - Preconditioning, and Extensions
 - Beyond Finite Differences...

Last Time: Linear Iterative Schemes

We looked at the Jacobi, Gauss-Seidel, SOR, and SSOR iterations applied to linear systems $A\bar{\mathbf{x}} = \bar{\mathbf{b}}$, originating from the 5-point Laplacian.

We quantified under what circumstances we can guarantee convergence of these iterations (J&GS: irreducibly diagonally dominant matrices, (S)SOR: $\omega \in (0,2)$), and discussed the convergence rates.

The discussion was extended to general linear systems, where A may be associated with the 9-point Laplacian, or something completely different. In this discussion we introduced **preconditioning**, where we find a matrix $M \approx A$, which is much easier to invert than A itself, and we leverage this in order to generate an efficient iterative solver.

Another Point of View: Optimization

We consider a system of linear equations $A\bar{\mathbf{x}} = \bar{\mathbf{b}}$, where A is symmetric positive definite.

We define

$$F(\bar{\mathbf{y}}) = \frac{1}{2}(\bar{\mathbf{y}} - \bar{\mathbf{x}})^T A(\bar{\mathbf{y}} - \bar{\mathbf{x}}),$$

and note that since A is positive definite $F(\bar{\mathbf{y}}) \geq 0$, and $F(\bar{\mathbf{y}}) = 0 \Leftrightarrow \bar{\mathbf{y}} = \bar{\mathbf{x}}$. Further, we can define

$$E(\bar{\mathbf{y}}) = F(\bar{\mathbf{y}}) - F(\bar{\mathbf{0}}) = \frac{1}{2}\bar{\mathbf{y}}^T A\bar{\mathbf{y}} - \bar{\mathbf{y}}^T \bar{\mathbf{b}},$$

which has a unique minimum at the solution of $A\bar{\mathbf{x}} = \bar{\mathbf{b}}$.

Now the gradient of $E(\bar{y})$ describes the direction of largest increase

$$G(\bar{\mathbf{y}}) = \nabla E(\bar{\mathbf{y}}) = A\bar{\mathbf{y}} - \bar{\mathbf{b}} = -\underline{\bar{\mathbf{r}}(\bar{\mathbf{y}})}.$$

Optimization \simple Steepest Descent

Since the gradient points in the direction of steepest ascent, the residual points in the direction of steepest descent.

Given an approximation (guess) $\bar{\mathbf{x}}^k$ to the solution of $A\bar{\mathbf{x}} = \bar{\mathbf{b}}$, we find a better approximation by searching in the steepest descent direction

$$\bar{\mathbf{x}}^{k+1} = \bar{\mathbf{x}}^k + \alpha_k \bar{\mathbf{r}}^k$$
, where $\bar{\mathbf{r}}^k = \bar{\mathbf{b}} - A\bar{\mathbf{x}}^k$,

and we select α_k so that $E(\mathbf{\bar{x}}^k + \alpha_k \mathbf{\bar{r}}^k)$ is minimized:

$$\begin{split} E(\bar{\mathbf{x}}^{k+1}) &= E(\bar{\mathbf{x}}^k + \alpha_k \bar{\mathbf{r}}^k) \\ &= \frac{1}{2} [\bar{\mathbf{x}}^k]^T A \bar{\mathbf{x}}^k + \alpha_k [\bar{\mathbf{r}}^k]^T A \bar{\mathbf{x}}^k + \frac{1}{2} \alpha_k^2 [\bar{\mathbf{r}}^k]^T A \bar{\mathbf{r}}^k - [\bar{\mathbf{x}}^k]^T \bar{\mathbf{b}} - \alpha_k [\bar{\mathbf{r}}^k]^T \bar{\mathbf{b}} \\ &= E(\bar{\mathbf{x}}^k) - \alpha_k [\bar{\mathbf{r}}^k]^T \bar{\mathbf{r}}^k + \frac{1}{2} \alpha_k^2 [\bar{\mathbf{r}}^k]^T A \bar{\mathbf{r}}^k. \end{split}$$

Setting $\partial E(\mathbf{\bar{x}}^k + \alpha_k \mathbf{\bar{r}}^k)/\partial \alpha_k = 0$ gives us

$$\alpha_k = \frac{[\overline{\mathbf{r}}^k]^T \overline{\mathbf{r}}^k}{[\overline{\mathbf{r}}^k]^T A \overline{\mathbf{r}}^k} = \frac{\|\overline{\mathbf{r}}^k\|_2^2}{[\overline{\mathbf{r}}^k]^T A \overline{\mathbf{r}}^k}.$$

Steepest Descent

The steepest descent algorithm is given by $\mathbf{\bar{x}}^0 = \mathbf{\bar{0}}, \, \mathbf{\bar{r}}^0 = \mathbf{\bar{b}}$:

$$\alpha_k = \frac{\|\bar{\mathbf{r}}^k\|^2}{[\bar{\mathbf{r}}^k]^T \mathbf{A} \bar{\mathbf{r}}^k}$$

$$\bar{\mathbf{x}}^{k+1} = \bar{\mathbf{x}}^k + \alpha_k \bar{\mathbf{r}}^k$$

$$\bar{\mathbf{r}}^{k+1} = \bar{\mathbf{r}}^k - \alpha_k \mathbf{A} \bar{\mathbf{r}}^k.$$

Where the update formula for the residual comes from

$$\begin{split} \mathbf{\bar{x}}^{k+1} &= \mathbf{\bar{x}}^k + \alpha_k \mathbf{\bar{r}}^k \\ A\mathbf{\bar{x}}^{k+1} &= A\mathbf{\bar{x}}^k + \alpha_k A\mathbf{\bar{r}}^k \\ \mathbf{\bar{b}} - A\mathbf{\bar{x}}^{k+1} &= \mathbf{\bar{b}} - A\mathbf{\bar{x}}^k - \alpha_k A\mathbf{\bar{r}}^k \\ \mathbf{\bar{r}}^{k+1} &= \mathbf{\bar{r}}^k - \alpha_k A\mathbf{\bar{r}}^k . \end{split}$$

Steepest Descent

We note that the steepest descent algorithm only requires one matrix-vector product $A\mathbf{\bar{r}}^k$ and two vector-vector inner products $(\|\mathbf{\bar{r}}^k\|^2, [\mathbf{\bar{r}}^k]^T \mathbf{A}\mathbf{\bar{r}}^k)$ per iteration.

When A is sparse the matrix-vector product can be implemented in $\mathcal{O}\left(N\right)$ operations.

Theorem

If A is a positive definite matrix for which A^TA^{-1} is also positive definite, then the steepest descent algorithm converges to the unique solution $\bar{\mathbf{x}}^* = A^{-1}\bar{\mathbf{b}}$ for any initial $\bar{\mathbf{x}}^0$.

Theorem

If A is SPD, then the steepest descent algorithm converges to the unique solution $\bar{\mathbf{x}}^* = A^{-1}\bar{\mathbf{b}}$ for any initial $\bar{\mathbf{x}}^0$.

It turns out, maybe somewhat counter-intuitively, that the steepest descent algorithm converges very slowly unless A is a (near-)multiple of the identity matrix.

The residuals tend to oscillate so that $\overline{\mathbf{r}}^{k+2}$ points in the same direction as $\overline{\mathbf{r}}^k$, and very little progress is made.

Next we quantify this convergence rate, and discuss the **conjugate gradient method** which is an "accelerated version of steepest descent."

Convergence Rate for Steepest Descent

Theorem (Convergence Rate for Steepest Descent)

If A is a symmetric positive definite matrix whose eigenvalues lie in the interval [a,b], then the error vector $\mathbf{\bar{e}}^k$ for the steepest descent method satisfies

$$[\bar{\mathbf{e}}^k]^T A \bar{\mathbf{e}}^k \le \left[\frac{b-a}{b+a}\right]^{2k} [\bar{\mathbf{e}}^0]^T A \bar{\mathbf{e}}^0 \equiv \left[\frac{\kappa-1}{\kappa+1}\right]^{2k} [\bar{\mathbf{e}}^0]^T A \bar{\mathbf{e}}^0$$

The larger the interval [a, b], *i.e.* the more ill-conditioned A is, the slower the convergence rate we get.

The **condition number** κ of a matrix is defined as

$$\kappa = \frac{b}{a} = \frac{|\lambda|_{\text{max}}}{|\lambda|_{\text{min}}},$$

it is an intrinsic measure of difficult the matrix is to invert.

The Steepest Descent Method: Zig-Zagging

The "zig-zagging" ($\bar{\mathbf{p}}^{k+2} \approx \bar{\mathbf{p}}^k$) is what causes the steepest descent method to slow down. The amount of zig-zagging is directly proportional to the ratio $|\lambda|_{max}/|\lambda|_{min}$, or more generally for a non-square matrix A, $\sigma_{\rm max}/\sigma_{\rm min}$, where σ_{ν} are the singular values of A.

Figure: Illustration of the "zig-zagging" of the search directions in the steepest descent algorithm. If $\kappa = 1$, then all the level curves of $\|A\bar{\mathbf{x}} - \bar{\mathbf{b}}\| = c$ are circles (hyper-spheres in \mathbb{R}^n) and the steepest descent direction points straight in toward the central point. The more elongated the ellipse becomes, the more zig-zagging we get...

Steepest Descent and Conjugate Gradient

The Conjugate Gradient Method

The Conjugate Gradient method can be viewed as an acceleration of the steepest descent method, in which we by adding a little bit of "memory" to the algorithm can avoid the zig-zagging.

We consider

$$\bar{\mathbf{x}}^{k+1} = \bar{\mathbf{x}}^k + \alpha_k \underbrace{\left[\bar{\mathbf{r}}^k + \gamma_k \underbrace{\left(\bar{\mathbf{x}}^k - \bar{\mathbf{x}}^{k-1}\right)}_{\alpha_{k-1}\bar{\mathbf{p}}^{k-1}}\right]}_{\bar{\mathbf{p}}^k},$$

clearly, if $\gamma_k \equiv 0$, we can recover the steepest descent algorithm.

We form the new search direction $\mathbf{\bar{p}}^k$ as a linear combination of the steepest descent direction $\mathbf{\bar{r}}^k$ and the previous search direction $\mathbf{\bar{p}}^{k-1}$. *i.e*

$$\mathbf{\bar{p}}^k = \mathbf{\bar{r}}^k + \beta_{k-1}\mathbf{\bar{p}}^{k-1}.$$

The Conjugate Gradient Method

The conjugate gradient iteration involves updates for the approximate solution $\bar{\mathbf{z}}$, the residual $\bar{\mathbf{r}}$, and the search direction $\bar{\mathbf{p}}$:

$$\begin{split} & \overline{\mathbf{x}}^{k+1} &= \overline{\mathbf{x}}^k + \alpha_k \overline{\mathbf{p}}^k, \\ & \overline{\mathbf{r}}^{k+1} &= \overline{\mathbf{r}}^k - \alpha_k A \overline{\mathbf{p}}^k, \\ & \overline{\mathbf{p}}^{k+1} &= \overline{\mathbf{r}}^{k+1} + \beta_k \overline{\mathbf{p}}^k. \end{split}$$

Where we want to select α_k and β_k in an optimal way. A minimization of the error $E(\bar{\mathbf{x}}^{k+1})$ with respect to α (just as in the steepest descent case), and a similar analysis of $E(\bar{\mathbf{x}}^{k+1})$ with respect to β gives

$$\alpha_k = \frac{\|\bar{\mathbf{r}}^k\|_2^2}{[\bar{\mathbf{p}}^k]^T A \bar{\mathbf{p}}^k}, \quad \beta_k = -\frac{[\bar{\mathbf{r}}^{k+1}]^T A \bar{\mathbf{p}}^k}{[\bar{\mathbf{p}}^k]^T A \bar{\mathbf{p}}^k} \equiv \frac{\|\bar{\mathbf{r}}^{k+1}\|_2^2}{\|\bar{\mathbf{r}}^k\|_2^2}.$$

Steepest Descent

Conjugate Gradient

Algorithm: The Conjugate Gradient Method

$$\mathbf{\bar{p}}^0 = \mathbf{\bar{r}}^0 = \mathbf{\bar{b}} - A\mathbf{\bar{x}}^0, \ k = 0$$

while (
$$\| \overline{\mathbf{r}}^k \| > \epsilon_{\mathsf{tol}} \| \overline{\mathbf{r}}^0 \|$$
)

$$\alpha_k = \frac{\|\bar{\mathbf{r}}^k\|_2^2}{[\bar{\mathbf{p}}^k]^T A \bar{\mathbf{p}}^k}$$

$$\mathbf{\bar{x}}^{k+1} = \mathbf{\bar{x}}^k + \alpha_k \mathbf{\bar{p}}^k$$

$$\overline{\mathbf{r}}^{k+1} = \overline{\mathbf{r}}^k - \alpha_k A \overline{\mathbf{p}}^k$$

$$\beta_k = \frac{\|\overline{\mathbf{r}}^{k+1}\|_2^2}{\|\overline{\mathbf{r}}^k\|_2^2}$$

$$\mathbf{\bar{p}}^{k+1} = \mathbf{\bar{r}}^{k+1} + \beta_k \mathbf{\bar{p}}^k$$

endwhile (
$$k := k + 1$$
)

The Conjugate Gradient Method

The CG method only requires one matrix-vector product $A\bar{\mathbf{p}}^k$, and two vector-vector inner products $[\bar{\mathbf{p}}^k]^T A \bar{\mathbf{p}}^k$ and $\|\bar{\mathbf{r}}^k\|_2^2$ per iteration, hence if A has $\mathcal{O}(N)$ non-zero entries, the work/iteration is $\mathcal{O}(N)$.

The CG gets its name (somewhat incorrectly, it should be "the A-conjugate search-direction method") from the fact that the generated residuals are orthogonal, and the search directions are A-conjugate, i.e.

$$[\mathbf{\bar{r}}^k]^T \mathbf{\bar{r}}^j = [\mathbf{\bar{p}}^k]^T A \mathbf{\bar{p}}^j = 0, \text{ for } k \neq j.$$

A direct corollary of these (easily checked) facts, is

Corollary

If A is an $N \times N$ symmetric positive definite matrix, then the CG algorithm converges in at most N steps.

The Conjugate Gradient Method

The *N*-step termination theorem tells us that for the 5-point Laplacian on an $N \times N$ grid we need at most

$$\label{eq:Wcg} \textit{W}_{\text{CG}} = \underbrace{5(\textit{N} \times \textit{N})}_{\text{Matrix Entries}} \cdot \underbrace{\textit{N} \times \textit{N}}_{\text{iterations}} = \mathcal{O}\left(\textit{N}^{4}\right),$$

operations to compute the exact solution to $A\bar{\mathbf{x}} = \bar{\mathbf{b}}$. This may not seem so impressive, since optimal SOR does a better job

$$W_{\mathsf{SOR}}^* pprox rac{\mathcal{N}^3}{\pi^2} \log(\epsilon^{-1}) = \mathcal{O}\left(\mathcal{N}^3\right).$$

However, in practice the iterates $\bar{\mathbf{x}}^k$ generated by the CG-iteration converge to \bar{x} very rapidly, and the iteration can be stopped for $k \ll N \times N$ iterations. Applied to the 5-point Laplacian, the CG iteration and optimal SOR both require $\sim N \log(\epsilon^{-1})$ iterations to reach a specified tolerance. CG has the advantage over SOR in that (i) there is no parameter (ω) which must be optimally chosen; further (ii) the CG-iteration can be accelerated further by preconditioning PCG(M).

Convergence Rate for the Conjugate Gradient Method

Theorem (Convergence Rate for Conjugate Gradient)

If A is a symmetric positive definite matrix whose eigenvalues lie in the interval [a, b], then the error vector $\mathbf{\bar{e}}^k$ for the steepest descent method satisfies

$$[\bar{\mathbf{e}}^k]^T A \bar{\mathbf{e}}^k \le \left[\frac{\sqrt{b} - \sqrt{a}}{\sqrt{b} + \sqrt{a}} \right]^{2k} [\bar{\mathbf{e}}^0]^T A \bar{\mathbf{e}}^0 \equiv \left[\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1} \right]^{2k} [\bar{\mathbf{e}}^0]^T A \bar{\mathbf{e}}^0.$$

Conjugate Gradient vs. Steepest Descent

 $\textbf{Figure:} \ \ \text{The convergence multipliers} \ \ m_{\text{SD}} = \left[\frac{\kappa-1}{\kappa+1}\right]^2 \text{, and } \ \ m_{\text{CG}} = \left[\frac{\sqrt{\kappa}-\sqrt{1}}{\sqrt{\kappa}+\sqrt{1}}\right]^2.$

Conjugate Gradient vs. Steepest Descent

Figure: The number of iterations necessary to reduce the initial error by a factor of $10\frac{-8}{s_{ij}}$

n	n ²	$\kappa(A)$	GS	SOR*	CG
8	64	47	252	65	11
16	256	169	837	121	27
32	1,024	641	2,870	223	52
64	4,096	2,489	9,983	414	98
128	16,384	9,807	34,706	777	192
256	65,536	38,926		1,473	370
512	262,144	155,103		2,813	715

Table: Number of iterations needed to achieve 10^{-8} **relative update.** 5-point Laplacian ∇^2_{5pt} in 2D discretized on an $n \times n$ grid $\rightsquigarrow n^2 \times n^2$ matrix, with $\sim 5n^2$ non-zero elements.

n	n ²	$\kappa(A)$	GS	SOR*	CG
8	64	47	_	71	10
16	256	169	_	136	28
32	1,024	641	_	261	59
64	4,096	2,489	_	504	119
128	16,384	9,807	_	984	239
256	65,536	38,926	_	1,938	470
512	262,144	155,103	_	3,844	941

Table: Number of iterations needed to achieve 10^{-8} **residual reduction.** 5-point Laplacian ∇^2_{5pt} in 2D discretized on an $n \times n$ grid $\leadsto n^2 \times n^2$ matrix, with $\sim 5n^2$ non-zero elements.

Bottom Line: Even in the "homework case" where the optimal SOR parameter is known, the Conjugate Gradient approach is better.

Speeding Up Conjugate Gradient — PCG(M)

The conjugate gradient algorithm is not the end of the story (it is just barely the end of the beginning). By combining the CG-algorithm with the idea of preconditioning ($M \approx A$, and M easily invertible) the Preconditioned CG algorithm can be derived.

Further, the CG-method can be extended to work for non-symmetric matrices as well:

Symmetry	$\begin{array}{c} \text{Linear System} \\ \textbf{A}\bar{\textbf{x}} = \bar{\textbf{b}} \end{array}$	Eigenvalue Problem $\mathbf{A}\overline{\mathbf{x}} = \lambda \overline{\mathbf{x}}$
$\mathbf{A} = \mathbf{A}^*$	CG	Lanczos
A ≠ A *	GMRES CGNE / CGNR BiCG, etc	Arnoldi

Steepest Descent and Conjugate Gradient

Finite Differences vs. Finite Elements

This ends our overview of finite difference schemes for hyperbolic, parabolic, and elliptic problems. We have seen quite a few tools useful for both analysis and implementation of these schemes...

More Topics...

- Spectral Methods
- Mimetic Methods (a different view of the Finite Difference problem)
- Finite Element Methods a different approach to approximation.
 - The FEM formulation is better suited for complex domains, and includes local error estimates which help us locally improve the solution exactly where these errors are large.
 - The biggest disadvantage, from a pedagogical point of view, is that whereas FD methods are quite straight-forward to implement, setting up a meaningful FEM-solver requires more "technology." There are some nice (\$\$\$) commercial packages available (e.g. Comsol Multiphysics: http://www.comsol.com/).

