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Abstract of the Dissertation

Computational Modeling and Bifurcation Analysis

of Bubbling Fluidized Processes

by

Bing Zhu

Claremont Graduate University and San Diego State University: 2008

Fluidization processes have many important applications in industry, in partic-

ular, in chemical, fossil, and petrochemical industries where good gas-solid mixing

is required. Such mixing is commonly achieved through bubbles which are formed

spontaneously and whose time-evolution appears to be governed by low-dimensional

deterministic dynamics. Understanding the space and time dynamics in more de-

tail is critical to future development of technologies that rely on the fluidization

phenomenon—transport of solid particles by fluids—such as chemical reactors.

In response to this need, we use a low-dimensional, computational agent-based

bubble model to study the changes in the global bubble dynamics in response to

changes in the frequency of the rising bubbles. A computationally-based bifurcation

analysis shows that the collective bubble dynamics undergoes a series of transitions

from equilibrium points to highly periodic orbits, chaotic attractors, and even inter-

mittent behavior between periodic orbits and chaotic sets. Using ideas and methods

from nonlinear dynamics and time series analysis, we are able to approximate non-

linear models that allow for long-term predictions and the possibility of developing

control algorithms. Additionally, we employ the Proper Orthogonal Decomposition

to better understand the bubble dynamics generated by multiple injectors.
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Chapter 1

Introduction

Fluidization was introduced in fluid catalytic cracking processes to convert heav-

ier petroleum cuts into gasoline in the early 1940s as the first large scale commer-

cial application [28]. Today, fluidization processes have many important industrial

applications, especially in chemical fossil and petrochemical industries where good

gas-solid mixing is required. Typical industrial applications include: coal gasifica-

tion, solid transportation, polymerization of olefins, heat exchange, polyethylene syn-

thesis, cracking of hydrocarbon, catalytic reaction, water treatment, and nanotubes

[6, 13, 15, 62]. Figure 1.1 depicts a schematic picture of a large circulating fluidized

combustor in Florida, in which upward blowing air lifts solid fuels, providing a tur-

bulent mixing of gas and solids.

The application of fluidized bed reactors in industries has specific advantages

such as providing excellent gas-solid contacting and particle mixing [6], rapid heat

exchange through circulating solids and easy control due to liquid like behavior [11].

On the other hand, fluidized-bed reactors have disadvantages such as insufficient

contact among gas and solids due to bubbling in a fluidized bed which consumes too

much energy in circulating gas [46], gas-bypassing in the form of bubbles, jets and

channeling.
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Figure 1.1: Application of a Circulating Fluidized Bed combustor to generate electric
energy (courtesy of DOE/National Energy and Technology Laboratory). Upward
blowing air lifts solid fuels, providing a turbulent mixing of gas and solids.

The behavior of a fluidization process can have numerous regimes based on the

size of the fluidized bed, flowing medium, flow velocity, physical properties of the solid

particles, and operating conditions [25, 62]. Bubbling is an important phenomenon

existing in most fluidization processes in which bubbles are generated continuously,

move upward vigorously, coalesce and interact with the flowing medium and particles

[6]. In applications in chemical, fossil and petrochemical industries, excellent gas-

solid mixing are even achieved through bubbles that are spontaneously formed during

the fluidization processes. Therefore, it is necessary to have good understanding of

fluidization processes, especially of the bubble dynamics, to provide reliable control

mechanisms for the wide range applications in industry. One important research

direction, which we adopt in this project, is to study the sensitivity of the bubble

hydrodynamics as well as of fluidization processes in response to small perturbations

of some key parameter(s), such as bubble injection frequency.
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To do so, we use a low-dimensional, computational agent-based model of bubble

behavior, to study the changes in the global dynamics of the bubbles in response to

changes in the frequency of the rising bubbles. A computationally-based bifurcation

analysis shows that the collective bubble dynamics undergoes a series of transitions

from equilibrium points to highly periodic orbits, chaotic attractors, and even inter-

mittent behavior between periodic orbits and chaotic sets. Using ideas and methods

from nonlinear dynamics and time series analysis, we are able to approximate non-

linear models that allow for long-term predictions and the possibility of developing

control algorithms. Additionally, we employ the Proper Orthogonal Decomposition

to better understand the bubble dynamics generated by multiple injectors.

The material in this thesis is organized as follows.

In Chapter 2, we start with a review of the nature of fluidization processes based

on previous experiments, including the description of three principal thresholds of

fluidization velocities: minimum fluidization velocity, minimum bubbling velocity,

and terminal velocity. Then we explore the main issues regarding bubble dynamics,

including bubble shapes, bubble-bubble interactions, velocity of a single rising bubble,

and a popular two-phase model for the formation of bubbles. We also discuss in this

chapter the emulsion phase, which is a mixture of gas and fine particles and is another

focus for this research project besides bubble dynamics.

The difficulty of modeling three-phase gas-solid-bubble dynamics in a fluidized

bed lies mainly in modeling bubbles and their complex dynamical behavior, including

coalescence and splitting [8]. Determining the velocity of each bubble is an essential

part in the modeling task. In Chapter 3, we introduce a low-dimensional, agent-

based bubble model, known as Dynamic Interacting Bubble Simulation (DIBS), which

describes main bubble-bubble interactions based on empirical observations and data
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fitting techniques such as imaging methods. We also summarize other approaches for

modeling the spatio-temporal behavior of bubbles and give critical reviews of these

models and their comparison to our DIBS bubble model.

With large amount of fine particles, both gas and solids can be treated as contin-

uum flows and thus can be modeled using traditional computational fluid dynamics

(CFD) methods. In Chapter 3, we present a review of CFD-based modeling using the

continuity equation for mass conservation and Navier-Stokes equation for momentum

conservation, as well as a quick review of boundary conditions. Since our focus is

on the emulsion phase and bubble phase, we develop a computational scheme for

numerical simulation of emulsion phase via finite difference methods.

Our main contributions in this thesis project are located in Chapters 4, 5, and

6, where we develop efficient data analysis techniques, bifurcation analysis, and time

series analysis, to study the global bubble dynamics in bubbling fluidized beds in

response to small perturbations of some bifurcation parameter(s) for the purpose of

providing control techniques or mechanisms in industrial applications. In Chapter 4,

we use the low-dimensional DIBS model to study the changes in the global dynamics

of fluidized beds by varying the bubble injection frequency, which is considered as a

distinguished bifurcation parameter.

This study is related not only to the control of fluidized beds but also to more

fundamental questions regarding the generation and transmission of information and

self-organization in spatio-temporal systems. Our study is aimed at the relatively

simple case of centralized single bubble nozzle. Other data analysis methodologies

are mainly based on the theory of time series analysis, including phase-space embed-

ding techniques, phase-portrait reconstruction, and data model fitting for future data

prediction. Our bifurcation analysis reveals that the bubble dynamics is attracted to-
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wards a fixed point at low frequencies, then evolves into a series of bifurcations with

new behaviors, including a single chaotic attractor, highly periodic orbits, multiple

chaotic attractors, and intermittent behavior between periodic orbits and chaotic sets.

By applying the time series analysis techniques, we demonstrate that the nonlinear

bubble dynamics can be reconstructed using local linear fitting model for long-term

prediction for all bubble injection frequencies, except for the region that exhibits in-

termittent behavior. The computational approaches of the time series analysis are

also described in greater detail in these chapters. In Chapter 4, in particular, we im-

plement a computational approach to numerically estimate the maximum Lyapunov

exponents. The results are consistent with the complex transitions shown by our

bifurcation analysis.

In Chapter 5, a different data analysis method, the Proper Orthogonal Decom-

position (POD), is used to extract the dominant features of computer simulations

of bubble dynamics with multiple injectors and of experiments with a spouting bed.

We present a method to digitize frames of data for a fluidized process and apply the

POD decomposition to extract dominant spatial features and unravel the temporal

evolution of the bubble dynamics. The temporal evolution data obtained through the

POD technique discloses different dynamical regimes of bubble swarms in fluidized

processes as bubble injection frequency varies. It is also found, however, that it is

rather hard to identify a few dominant components for the case with multiple bubble

injectors. In spite of this shortcoming, the POD analysis was successfully applied

to spouting beds, yielding around 20 modes to sufficiently capture 80% of the total

energy in its overall dynamic behavior.

In Chapter 6, we present a revised version of the DIBS model that includes the

emulsion phase. This revised model includes coupling for bubble phase and emulsion

phase, meaning that bubbles impact the emulsion phase through volume fraction while
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the emulsion phase affects the rising velocities of the bubbles. With this new model,

we revisit our bifurcation analysis with single nozzle and compare the results between

the original DIBS simulation from Chapter 3 and the revised bubble-emulsion model.

We also carry out simulations with the revised computational model to compute the

ozone concentrations and compare simulations with the data from real fluidized bed

experiments by Fryer et al. and the data from the original DIBS model by Pannala

et al. The results show a fairly good match for various gas superficial velocities.
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Chapter 2

Background

2.1 Fluidization Processes

Fluidization is a process in which solid particles behave like liquid in a vessel due

to a continually flowing medium such as gas or air [25, 30, 31, 32]. A fluidized bed,

regardless of its application, normally consists of a vessel that contains solids and

has a porous bottom plate for injecting a flowing medium upward. When the flow

rate is low, the flowing medium percolates through the gaps between the particles.

The particles remain packed and are in a steady state as is shown in Figure 2.1(a).

As the flow speed of the medium increases and reaches a threshold at which the

forces from the flow exerted on the particles overcome gravitational forces, particles

start to be suspended in the flowing medium inside the vessel. Further increasing

the flow speed will cause particles to behave like fluids, a state called fluidization

(see Figure 2.1(b)). This threshold of flowing velocity for the carrying medium is

called the minimum fluidization velocity (Umf ). Many efforts have been made to find

a formula for the correlation between minimum fluidization and physical properties

of the flowing medium and particles for the purpose of providing accurate design in

building a fluidized bed. For a complete list of the formulas, see [15].
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Figure 2.1: Fluidization Processes. (a) Fluidized bed is in a steady state when the
upward flow rate, U , is less than the minimum fluidization velocity (Umf ). (b) Flu-
idization happens when the flow rate crosses Umf . (c) When the flow rate reaches the
minimum bubbling velocity (Umb), bubbles are created and the fluidized bed exhibits
three phases, bubble phase, solid phase and gas (or liquid) phase.

As the flow rate increases further towards a second threshold, called the minimum

bubbling velocity (Umb), bubble voids are formed thus creating a dramatic change in

the dynamics as bubbles move upwards vigorously and coalesce when bubbles touch.

Figure 2.1(c) illustrates a fluidized bed with medium flow, moving particles, and

bubbles. This particular state is the bubbling fluidized regime and is the focus of

the work in this thesis. Our goal is to seek computational solutions and bifurcation

analysis methodologies that can help us understand the spatio-temporal behavior

of bubbles, their interactions with solid particles and gas, and transitions between

different dynamical regimes in response to changes in parameter(s).

A bubbling fluidized bed has three phases: bubble phase, solid phase and gas (or

liquid) phase as illustrated in Figure 2.1(c) [24]. The dynamics of such three-phase

fluidized bed varies depending on the bed design, particle size and shape, density

and cohesiveness [25, 62]. With modern technologies, scientists and researchers have

been using imaging system such as Capacitance Imaging Systems used by Halow and
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Nicoletti [34], Particle Image Velocimetry (PIV) by Chen and Fan [12], and X-ray

computational tomography by Behling and Mewes [3], to gather empirical information

of fluidization process from actual experiments. Numerical work based on computa-

tional fluid dynamics (CFD) methods allows integration of computer simulation and

visualization tools to obtain numerical solutions of available models that can provide

insight into the complex interactions that occur during the fluidization phenomenon

[24, 31, 32].

2.2 Bubble Dynamics in Fluidized Beds

An often observed regime in fluidization is bubbling in which bubbles are generated

from the granular bottom of a fluidized bed and rise vigorously. In the bubbling

fluidized regime, bubbles are generated as the speed of the flowing medium reaches

the minimum bubbling velocity. Due to the upward moving flowing medium and

buoyancy, the rising velocities of bubbles are closely related to physical properties of

a fluidized bed such as the viscosity of the flowing medium and particles. Thus the

flow of bubbles creates a complex dynamical system in the bubbling fluidized regime

that can be a key factor in determining the system hydrodynamics [24].

The shape of a bubble in a fluidized bed is mainly controlled by its surrounding

solids and flowing medium. For small bubbles, the bubble shape is almost spherical

due to the dominance of surface tension. When a bubble has an intermediate size, its

shape tends to be oval with a sphere cap. Bubbles become slugs when they are large.

The shape of a slug can be a round spherical cap with a flat bottom like a bullet or

is like a half bullet when a slug is attached to the bed wall [15, 46].

There are two main bubble-bubble interactions. One is bubble coalescence, which

is the most prevalent in bubbling three-phase fluidized beds [50]. When two bubbles
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touch physically in three-dimensional space, they tend to coalesce quickly as observed

in fluidized-bed experiments by Toei and Matsuno in 1967 [73], Shichi et al. in 1968

[69], Clift and Grace in 1970 [14] by using photographs and tracing techniques, and

by Halow and Nicoletti in 1991 using capacitance imaging systems [34]. Another

important bubble-bubble interaction is that in which a bubble exerts some pulling

force on its trailing bubble and thus changes the bubble rising velocity of the trailing

bubble [18, 60]. These two main features in bubble dynamics are included in the

computational bubble model we adopted in our work which will be described in more

detail in Chapter 3.

Fan [24] proposed a bubble break-up model in which he claimed that the bubble-

particle collision is the reason for a bubble to break. The bubble-particle collision

causes either the bounce of the particle away from a bubble or the penetration of a

particle into the bubble, which can cause bubble break-up. Clift et al. [14] presented

three crucial factors that can cause bubble break-up. Thus in the case of fine particles

such as powders, bubble break-up is almost impossible and so far is not included in

the DIBS bubble model.

Davies and Taylor [16] presented the first formula in 1950 to estimate the rise

velocity of a single bubble:

Vb∞ = (2/3)
√

gR, (2.1)

where g is the gravitational acceleration and R is the bubble diameter. This is an

oversimplified formula when dealing with a cluster of rising bubbles. Werther [78]

found that the velocity of a rising bubble is also related to the bed diameter. In an

actual fluidized bed with a cluster of bubbles, the velocity of each bubble increases

with bubble concentration [13]. Thus the interactions for a bubble with other bubbles

must be included. For an array of bubbles in a bubbling fluidized bed, the velocity
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of a bubble can be generically expressed as:

~Vk = Vb∞~i + ~Qk, (2.2)

where ~Vk is the velocity of bubble k, ~i is the unit vector in the vertical direction, and

~Qk is the additional velocity of the bubble k from the interaction with other bubbles.

In Chapter 3, we present several approaches for modeling bubble velocities.

The two phase model by Toomey and Johnstone [74] proposed that bubble vol-

ume is proportional to excess velocity, which is the difference between bubble super-

ficial velocity and minimum fluidization velocity in their two-phase theory. Based on

this assumption, a low-dimensional model, Dynamic Interacting Bubble Simulation

(DIBS) model, was developed by Pannala et al. at Oak Ridge National Laboratory

in Tennessee [35, 58]. The DIBS model identified the leading bubble as the most

influential one in determining the velocity of a trailing bubble in a fluidized bed. The

DIBS formula for bubble velocity in bubbling gas-solid fluidized beds was derived

empirically through imaging system and is discussed in greater detail in Chapter 3.

2.3 Emulsion Phase

In the three-phase bubbling fluidized regime, the motion of the flowing medium im-

pacts the movement of bubbles and particles. Different flow regimes of gas (or liquid)

phase and particle phase will be present depending on the design of the fluidized

bed. The main factors are gas (or liquid) flow velocity, solid particle size, shape and

density, and actual operating conditions.

Figure 2.2(a) illustrates a circulating fluidized bed in which solids are collected

and then are circulated back into the fluidized bed. In this fluidized bed, upward flow

and movement of particles are quite homogeneous.
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Figure 2.2: Fluidized Beds. (a) A circulating fluidized bed which has upward flow of
bubbles and circulating emulsion phase. (b) A spouting bed circulates solids through
a single centralized jet.

Figure 2.2(b) shows a spouting bed in which solids circulate inside the bed by gas

through a single centralized jet, creating a complicated three phase bubbling fluidized

regime.

When there is a large number of fine particles such as fine powders or catalysts,

gas (or liquid) and fine particles are mixed together to form the emulsion phase.

Bubbles (void spaces) rise much faster than the upward flowing gas in emulsion phase,

promoting circulation and mixing of particles. In such a fluidized bed, only two

phases, bubble phase and emulsion phase, need to be considered. When the flowing

medium is liquid, the emulsion phase is the liquid-like flow after mixing with particles

and thus can be easily distinguished from air bubbles. In a gas-solid fluidized bed,

the excessive flow, reaching minimum bubbling velocity, passes through the fluidized

bed and creates void spaces that behave like air bubbles and have been observed in

actual experiments. This forms the basis for the two-phase theory by Toomey and

Johnstone [74]. Using capacitance imaging system, Halow and Nicoletti [34] observed
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that there is a grey region between a voidage (bubble) and emulsion phase, indicating

there are no sharp boundaries for voids in a gas-solid fluidized bed. This grey region

is also referred to as a cloud and we will discuss it in Section 6.3 for calculating ozone

concentrations.
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Chapter 3

Computational Modeling of
Bubbling Fluidized Processes

3.1 DIBS - A Low-dimensional Bubble Model

Since the time when Davies and Taylor [16] introduced Eq. (2.1) for the velocity of a

free rising bubble in a bubbling fluidized bed in 1950, many attempts have been made

for modeling bubble velocities. Earlier work focused mainly on explaining bubble for-

mation and the physical properties such as bubble diameter, size, and shape. Harrison

and Leung [36], Zenz [79], and Caram and Hsu [10] developed various models that

described the growth of bubbles due to gas injection at a single orifice. Nieuwland et

al. [54] provided a complete review of existing models in 1996. However, none of these

efforts addressed the collective behavior of bubbles nor the complete interactions, in

space and time, which were commonly observed in related experiments.

With the arrival of modern computers, scientists and engineers started to develop

computational models and numerical simulations of bubble dynamics. The CHEM-

FLUB software developed by Systems Science and Software Inc. in 1980 presented one

modeling approach to simulate gas and solids flow in fluidized gasifiers [4, 30, 63, 66].
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In its approach, bubbles are treated as a continuum flow and thus the continuity

equation is applied to model the bubble column. Yet the complicated phenomena

of bubbles in bubbling fluidized beds, for example, the bubble-bubble interactions

including bubble coalescence, are missing in such a computational model. Develop-

ing visualization software to simulate and trace trajectories of bubbles from such an

approach is also difficult. Thus a discrete bubble modeling (DBM) method, in which

the motion of each bubble is traced computationally by solving a modeling equation

along with additional models for bubble coalescence and bubble splitting, provides a

more accurate approach.

In recent years, Kuipers et al. [7, 22] have been actively working on a direction to

model bubble dynamics using a Newtonian approach. In their approach, each bubble

is modeled as an individual agent described via a Newtonian equation of the form:

mb
dv

dt
= ΣF, ΣF = Fg + Fp + Fd + Fvm, (3.1)

where mb is the mass of a bubble, v is its velocity, and F is the total force acting

on the bubble, Fg is the gravitational force, Fp is the pressure force, Fd is the drag

force from the flow resistance towards a moving bubble, and Fvm is the virtual mass

force from the acceleration of the emulsion phase. The advantage of Kuipers’ DBM

approach is that it has solid theoretical foundation and can have two-way coupling

integration with the computational model of the emulsion phase.

Lapin et al. [47] presented a different DBM model in 2001 for bubble velocity

in which they claimed the bubble motion was drawn by pressure gradients and was

decreased by its flow resistances. They came up with the following equation for bubble

velocity:

cvmρL
duslip

dt
= −∇p− cduslip, (3.2)

where uslip is the bubble velocity, cvm is the virtual mass coefficient, ∇p is the pres-
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sure gradient, ρL is the fluid density, and cd is the drag coefficient. Godo [33] used

Lapin’s bubble model and presented the same idea as ours regarding two-way coupling

between bubble and emulsion phases as we will discuss this in Chapter 6.

However, both approaches totally ignore the important acceleration factor for a

rising bubble from its leading bubble, which has been observed in actual experiments.

In the 1980s, scientists and researchers began to use imaging systems to study the

dynamics of bubbles in fluidized beds. Among those works, Halow and Nicoletti used

capacitance imaging system, consisting of electronic sensing circuits and electrodes, to

record the discretized images in three dimensions of the voidage distributions inside a

fluidized bed [34]. In 1993, Halow et al. presented an empirical formula for the velocity

of a rising bubble that took into account the fact that a bubble has some pulling

force for a trailing bubble [35]. This work laid the foundation for the computational

model for bubble dynamics in fluidized bed, Dynamic Interacting Bubble Simulation,

or DIBS model, which was developed in 2001 jointly by Pannala, Daw, and Halow

[20, 57, 58, 59] at Oak Ridge National Laboratory, Tennessee. The name of the DIBS

model was officially introduced for the first time in 2004.

3.1.1 Bubble Rise Velocity

In a bubbling fluidized process, bubbles move rapidly upward and particles flow

around rising bubbles. For a single bubble, the volume balance between the solid

flow and bubble movement forms the following relation for the solids velocity and

bubble rising velocity:

Us =
Ab

Ae

· 1− εw

1− εe

· Ub, (3.3)

where Us is the velocity of the solid phase, Ub is the bubble rising velocity, Ab is the

area of cross section of the bubble, Ae is the area of emulsion phase, εw is the void
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Figure 3.1: Schematic diagram of a rising bubble and its interaction with surrounding
solids flow by Halow and Nicoletti.

behind the bubble, and εe is the void in the emulsion phase surrounding the bubble.

Notice that Ae = At − Ab, where At is the area of the cross section of the fluidized

bed.

For the flow of particles, Bernoulli’s equation generates the relation

lb =
Us

2

2g
+

Vs
2

2g
, (3.4)

where lb is the length of a bubble, g is the gravity acceleration, and Vs is the solids

velocity tangent to the nose of a bubble (See Figure 3.1). If we assume the nose of

the bubble to be hemispherical, Vs and Ub have the following relation:

Vs =
1√
2

(
Db

lb

)
Ub, (3.5)

where Db is the diameter of the bubble.

Taking an approximate form for Eq. (3.3) by considering both εw and εe to be

ε−∞, i.e., the voidage in the emulsion phase far from the bed, and then combining
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Figure 3.2: Collected velocity data of a trailing bubble from imaging system and
fitting curve from Eq. (3.7) by Halow and Nicoletti. The final equation (3.8) used in
the DIBS model is empirically revised based on Eq. (3.7).

the results of Eq.(3.4) and Eq.(3.5), the rising velocity of a bubble can be written as:

Ub =

√√√√√ glb

2 +

(
A∗

1− A∗

)2 , (3.6)

where A∗ = Ab/At, the ratio of bubble cross section area to bed area.

The imaging system for the bubbling fluidized bed captures bubble wake behavior

that exerts some pulling force and accelerates the rise of a trailing bubble. This is an

additional velocity for a bubble that is trailing another bubble and is related to the

diameter of its leading bubble. Figure 3.2 is a plot by Halow and Nicoletti illustrating

actual experimental data and a fitting curve from the following empirical formula for

a trailing bubble:

Ub =

√√√√√ glb

2 +

(
A∗

1− A∗

)2

[
1 + 3

(
Di−1

Sp

)2
]
, (3.7)

where Di−1 is the diameter of the leading bubble and Sp is the distance between a

trailing bubble and its leading bubble.
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In 1993, Halow and Fasching [35] further examined their fitting model. By com-

paring Eq. (3.7) with those by Farrokhalaee [27] and Lord [49], they suggested that

the square term be replaced by a cubic form. This established the bubble velocity

formula of Eq. (3.8) adopted by Pannala, Daw, and Halow who later developed the

computational DIBS model [60] for bubble dynamics in bubbling fluidized bed.

3.1.2 Computational DIBS Model

The DIBS model was officially introduced in 2004 by Pannala et al. [58]. In the

DIBS model, each bubble is treated as a single agent and is described by a low-order

ordinary differential equation (ODE):

∥∥∥∥∥d ~Xi

dt

∥∥∥∥∥ = ‖~Vi‖ =

√√√√√ gli

2 +

(
A∗

i

1− A∗
i

)2

[
1 + 3

(
DLj

Xi−j

)3
]
, (3.8)

referring to Figure 3.3, ~Xi is the position, ~Vi is the velocity, li is the length of i-th

bubble, A∗
i is the fraction of cross section area of i-th bubble divided by testbed area,

DLj is the diameter of the leading bubble, and Xi−j is the distance between i-th

bubble and its leading bubble, j-th bubble.

Besides Eq. (3.8) for each bubble, there are some assumptions in the computa-

tional DIBS model.

i. If a bubble does not have a leading bubble, its equation will be the one having

no j related term, i.e. the cubic term, in Eq. (3.8).

ii. Each bubble is spherically shaped if the diameter of the bubble is less than 85%

of the bed diameter. If the diameter of a bubble is larger than or equal to 85%
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of the bed diameter, the bubble will be cylindrically shaped with a hemispherical

end cap.

iii. At any moment, the movement of a bubble is affected by its leading bubble

through a pulling force. A bubble j is called a leading bubble for a bubble i if the

bubble j has vertical position above the bubble i and has the shortest distance

with the bubble i (See Figure 3.3).

iv. Two bubbles coalesce when they touch in 3-dimensional space.

v. When reaching testbed surface, a bubble disappears.

vi. The bubble rise velocity given by Eq. (3.7) is relative to the solid flow in the

fluidized bed.

Notice that by assumptions (iv) and (v), the number of ODEs varies as the number

of bubbles changes with the fluidized bed. Thus, it is very difficult to carry out

an analytic study of this model purely by looking at a cluster of coupled bubbles

modeled by Eq. (3.8). On the other hand, the use of powerful computers allows

such computational model to be implemented numerically and simulated graphically.

Figure 3.4 is a modified version of a flowchart for the implementation of the DIBS

model originally designed and implemented by Pannala et al. at Oak Ridge National

Laboratory [60].

In assumption (i), the DIBS model stresses the influence of an immediate leading

bubble for bubble velocity. It is also worth mentioning that such approach was sought

in the early 1970s by Orcutt and Carpenter [55] in 1971, and Allahwla [1] in 1975.

In the actual computational simulation, bubbles are generated periodically from

a fixed number of bubble injectors through a porous plate located at the bottom of

a fluidized bed. The bubble injection frequency will play an important role in our
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Figure 3.3: The leading bubble j exerts a pulling force on a trailing bubble i. Bubble
j is the leading bubble for bubble i if bubble j is above bubble i and has the shortest
distance between two bubble, Xi−j.

bifurcation analysis, as it will be discussed later in Chapters 4 and 5. The initial

critical values for the DIBS simulation are the bed shape (either a cylindrical or a

rectangular test bed), bed size, the number and positions of bubble injectors, bubble

injection frequency, minimum fluidization velocity, and superficial velocity of the gas

flow. A detailed list of initial values of our computational simulation are listed in

table 4.1 in Chapter 4.

The operation to update locations of bubbles is to numerically solve Eq. (3.8)

for each bubble. The first order Euler method can be used with a small value of

integration time step size to acquire better accuracy in finding numerical solutions.

After the bubble-positions are updated, the program checks the boundary condition

in the sense that a bubble is bounced fully when it meets the side wall of the vessel.

The program then checks if there are coalescing bubbles by checking if there are

two bubbles that are physically in contact with one another. Bubbles that touch
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Figure 3.4: The modified flowchart of computational simulation of DIBS model with
adaptive integration step size. The operation to update the locations of bubbles is
actually to numerically solve the ODE of Eq. (3.8).

in 3-dimensional space are merged into one bubble with volume equal to all merged

bubbles. Bubbles that surpass the top of the fluidized bed are removed from the

computational array.

Bubbles are generated periodically in a real-time simulation in which the software

program checks at each loop if it is time to generate new bubbles. New bubbles are

formed with a fixed bubble diameter, or with an initial size related to gas velocity,

from the bottom of the fluidized bed and are then added into the bubble array. Each

bubble has an initial color that is changed once it passes a fixed observation point. If

there is a new bubble or bubbles passing the observation point, the passage time is
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Figure 3.5: Adjustable dt for ODE integration. ∆t is the initial fixed time step size.
f is the bubble injection frequency. And dt is the adjustable time step size. An extra
integration step is taken at tn+1.

recorded for further bifurcation analysis that is described in more detail in Chapter

4.

After each computational loop, the time is advanced to the next time step. Usually

the time step size is fixed in a finite difference method to find numerical solutions of

differential equation(s). However, we realized that the actual integration time step

size, dt, has to be adjusted in real-time to be able to run the simulations with bubble

injection frequency (BIF) values that are evenly distributed in a given interval. This

is because there would be limited choices of BIF values if the fixed value of dt is used

due to the following relationship:

f =
1

N · dt
, (3.9)

where N is the number of time steps between two bubbles to be generated and f

is the bubble injection frequency (BIF). If a fixed dt = ∆t is used, the values of

f from Eq. (3.9) would not be evenly distributed on any given interval by varying

N as positive integers. To overcome this problem, a variable integrating time step,

dt, is used in actual implementation. The value of dt is checked and adjusted as

needed in each loop as illustrated in Figure 3.5. With this approach, values of BIFs

for the simulations can be evenly distributed in any given interval, thus allowing us

to carry bifurcation analysis for bubble dynamics in response to changes in injection

frequencies.
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3.2 Modeling Gas and Particle Phases

Two fundamental modeling approaches, Eulerian-Eulerian and Eulerian-Lagrangian,

are used to model multiphase flows for gas phase and particle phase. The Eulerian-

Eulerian is a continuum based modeling method in which each phase is treated as a

flow. The Eulerian-Lagrangian approach seeks modeling for each individual particle

and thus is able to simulate trajectories of dispersed particles.

Using the Eulerian-Lagrangian approach, a complete description of the dynamics

of solid particles suspended in a Newtonian fluid can be achieved through the Navier-

Stokes equations for the fluid phase and the Newtonian equations for the solids. This

approach, however, leads to solving a very large number of equations at each time step

in order to trace the movement of all particles in a fluidized bed. When the number

of particles is very large, finding a numerical solution becomes so computationally

intensive that it can easily exceed the computing power of any of today’s supercom-

puters, not to mention handling the particle-particle and particle-gas interactions.

Therefore, it is suitable to use a granular flow model, namely the Eulerian-Eulerian

approach, to model both gas and particle phases for practical purposes.

When pursuing the Eulerian-Eulerian approach for gas and particle phases, the

popular computational fluid dynamics (CFD) method can be applied to describe

both gas and particle phases mathematically, in which the well-known Navier-Stokes

equations and continuity equations are used based on the fundamental laws of con-

servations of momentum and mass [24, 31, 32, 51, 52].

3.2.1 Governing Equations

Conservation of Mass
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Gas Mass Balance:

∂

∂t
(εgρg) +∇ · (εgρg~vg) = 0, (3.10)

Solid Mass Balance:

∂

∂t
(εsρs) +∇ · (εsρs~vs) = 0, (3.11)

where, with respect to gas and solids by the corresponding subscripts, εg and εs are

volume fractions, ρg and ρs are densities, and ~vg and ~vs are velocities.

Conservation of Momentum

Gas Momentum Balance:

∂

∂t
(εgρg~vg) +∇ · (εgρg~vg~vg) = −εg∇P +∇ · ¯̄τg + Fgs (~vs − ~vg) + εgρg~g, (3.12)

Solids Momentum Balance:

∂

∂t
(εsρs~vs) +∇ · (εsρs~vs~vs) = −εs∇P +∇ · ¯̄Ss + Fgs (~vg − ~vs) + εsρs~g, (3.13)

where P , ¯̄Ss and ¯̄τg represent pressure in the gas phase, solid phase stress tensor, and

fluid phase deviatoric stress tensor. Fgs denotes the coefficient of the interface force

between gas phase and solid phase, and ~g is the acceleration due to gravity.

In the case of the emulsion phase, the equations are reduced to two equations, one

equation for conservation of mass and another equation for the conservation of energy.

The DIBS model is coupled with the equations for the emulsion phase. More precisely,

bubbles impact the emulsion phase in the sense that bubbles are used to compute

the volume fractions in both equations of mass conservation and energy conservation

for emulsion phase. With this coupling, a generic computational program can be

constructed as depicted by the flowchart in Figure 3.6.

The boundary conditions for the governing equations of gas and particle phases,

including bed wall, inlet and outlet of a fluidized bed, vary depending on actual flow
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Figure 3.6: Flowchart of Gas-solid-bubble Simulation. A computational simulation
for bubbling gas-solid fluidized bed uses DIBS model for tracing bubbles and uses
Navier-Stokes equations and continuity equations for gas phase and particle phase.

regime, bed physical size and other experimental parameters in a fluidized bed as is

depicted in two examples in Figure 2.2. For wall confinement, nonslip and free-slip

boundary conditions are commonly used in many CFD approaches. A nonslip bound-

ary condition means that the velocities are zero in all directions and are commonly

used for gas flow. A free-slip boundary condition indicates that the velocity is zero in

the normal direction with respect to the wall. For fine particles, Tsuo and Gidaspow

[75] suggest that the boundary condition may be between free-slip condition and non-

slip condition. In our study, we choose to approach the problem with a simplified

one-dimensional case to study the global dynamical behavior of emulsion phase and

bubble phase. In this case, no wall boundary condition needs to be considered for the

emulsion phase, as we discuss the approach in the next section. A detailed discussion

of the wall boundary conditions can be found in Tsuo and Gidapow’s paper [75].
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3.2.2 One-dimensional Discretization and Finite Difference
Scheme

As described in previous chapters, the gas (or liquid) and particles phases are com-

bined into a single emulsion phase when dealing with fine particles such as powders

and catalysts in a fluidized bed. Thus in this case, there is only one set of two

equations, an equation for mass balance and an equation for energy balance, for the

emulsion phase as presented before. By adopting the DIBS model for bubble dynam-

ics, the equation for energy conservation is intuitively replaced by the DIBS model

and thus we only need one equation for conservation of mass, namely, the continuity

equation

∂Vf

∂t
+

∂

∂z
(Vfue) = 0, (3.14)

where Vf is the volume fraction and ue is the velocity of emulsion flow in the vertical

or z direction.

To seek a numerical solution in this case, the fluidized bed can be divided into

slices (or species) where each slice has its own value of velocity as illustrated in Figure

3.7. In reality, the emulsion phase often has circulation behavior in a fluidized bed.

Each slice might have some areas with upward emulsion velocities and some areas

with downward velocities. The goal of dividing the fluidized bed into such slices is to

seek the average flow velocity for each slice.

By applying the finite difference method to the previously mentioned partial dif-

ferential equation (3.14), the problem can be solved using the following scheme:

un+1
i+1 =

1

V n+1
i+1

[
V n+1

i un+1
i − ∆z

∆t

(
V n+1

i − V n
i

)]
, (3.15)

where i refers to the i-th slice and n is the index for time steps.

There will be no wall boundary conditions to be considered in this case. The only
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Figure 3.7: Numerical simulation of emulsion phase. By dividing the fluidized bed into
slices, the numerical solution for emulsion phase can be reduced to a one-dimensional
case.

initial condition of this particular one-dimensional case is that the emulsion velocity of

the first slice is equal to the superficial velocity of the flowing medium (gas). Namely,

un
1 = us, at any time step n. For the time step n + 1, the change of void fraction

in each slice can be computed after bubbles are traced by the DIBS model. Thus

the velocity for each slice can be obtained through Eq. (3.15). For each slice, the

velocities of emulsion phase can be collected as a time series from the computational

implementation and then can be further analyzed by time series methods.
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Chapter 4

Bifurcation Analysis of
Single-Bubble Injector

4.1 Motivation

The goal of the bifurcation analysis is to seek control guide for engineering fluidized

beds through numerical simulations and data analysis on some identified key elements.

To achieve this goal, some data analysis methods are needed to understand the ex-

pected nature of the dynamical information such as the generation and transmission

of information and self-organization into spatio-temporal systems.

In the last decade, Skrzycke et al. [71], Daw et al. [19, 21], Daw and Halow [17, 18],

and Schouten et al. [5, 67, 68] demonstrated in their research work the association

of low-dimensional deterministic chaotic phenomena in the dynamics of bubbling

fluidized beds. These results indicate the possibility of controlling the fluidization

dynamical behavior through perturbation techniques on some sensitive parameters.

The DIBS bubble model can be viewed as a more general class of models referred

to as self-propelled particle systems [9]. Using the DIBS model, Pannala et al. [58]

studied the collective behavior of large numbers of rising bubbles and showed that the
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DIBS model can produce so-called channeling behavior in which large-scale numbers

of bubbles tend to collapse toward the center of the flow. The early works in studying

the chaotic behavior of bubble dynamics within a fluidized bed are based on the data

collected from actual experiments, mainly the time series from pressure signals via

monitoring the pressure within fluidized beds. Therefore, it would be interesting to

explore the computational approach with the DIBS model for bubble dynamics in

more details, in particular the transitions among different chaotic regimes for some

sensitive parameters, or bifurcation parameters.

Key issues involved in conducting bifurcation analysis of bubble dynamics within

bubbling fluidized bed are:

1. What is the detailed nature of the local bifurcations generated by varying values

of sensitive parameter(s)?

2. What is the effective dimensionality in the local dynamics compared with the

original bubble model used?

3. What level of predictability should be expected based just on the local mea-

surements?

The answers to the above questions will allow a better understanding of the ex-

pected nature of the dynamical information that should be available to a typical

experimental observer. Although the focus of bifurcation analysis for questions (1),

(2) and (3) is not directly on the issue of fluidized-bed control (as did Kaart et al.

[39] and De Korte et al. [44]), they are obviously related to control. It will be exciting

to see such study through computational modeling and numerical simulation produce

results that are consistent with typical experimental observations and as well as with

those early research works of last decade.
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4.2 Bifurcation Parameter and Measurement Vari-

able

In our DIBS computational simulations, bubbles are generated periodically from the

bottom of the porous plate as described in Section 3.1.2. One of the main parameters

is the bubble injection frequency (BIF). Therefore a straightforward idea would be

to see the change of the bubble dynamics by varying the BIF values. A BIF value

is used by the simulation program to form bubbles periodically and has, of course,

practical significance in controlling fluidized bed performance. Notice that the BIF

is not shown in Eq. (3.8) of the DIBS model. Therefore, it is difficult to perform

a bifurcation study analytically by just working directly on a cluster of equations.

Fortunately, computational simulations allow such work to be possible to unravel the

chaotic behavior of bubble dynamics in a bubbling fluidized bed.

The simulated experimental measurement is a hypothetical laser device that de-

tects passing bubbles and records time series for rising bubbles that pass through a

fixed observation point for single injector case as is depicted in Figure 4.1. Nguyen et

al. [53] and Tufaile and Sartorelli [76, 77] successfully used this type of measurement

to study bubble-train dynamics. Notice that the actual formation of bubbles is related

to the superficial velocity of flow medium and minimum fluidization velocity (Umf ).

Therefore, reasonable BIF values for numerical simulations are initially chosen from

near 0 Hz to 10 Hz. Here n Hz is defined to be n bubbles to be generated per second

by the simulated bubble injector.

After the data, the time for bubbles passing the laser detector, is collected, the time

intervals, ∆ti (as is depicted in Figure 4.1), between two consecutive data points are

computed offline and form a time series. By eliminating the transients, a bifurcation

diagram is constructed which shows complex bubble dynamical behavior with fixed
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Figure 4.1: Experiment with Single Bubble Injector. A schematic diagram depicts
the devices for detecting and recording the time of bubbles passing the observation
point. The time interval between two passing bubbles, ∆t, is calculated offline to form
a time series to which the bifurcation analysis is carried for a single bubble injector
case.

points, chaotic attractors, periodic solutions and intermittency behavior.

4.3 Computational Simulation

Based on the DIBS model described in Section 2.1, the movement of a bubble in

a fluidized bed at each time step can be traced by solving Eq. (3.8) using typical

numerical methods for ODEs. A computational code is programmed by integrating

the ODE for all bubbles to trace their movements. We modified the software to include

the algorithm allowing adjustable time step, dt, as mentioned in Section 3.1.2, with

BIF values from a refined grid on (0, 10] to run computational simulations in parallel

in cluster machines. In addition, the color scheme was implemented into the software

to record bubble passage time. Table 4.1 lists the main values for the experiments
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Initial bed height 40.0 cm
Bed diameter 22.9 cm
Bed Shape Circular
Umf 1.7 cm/s
Superficial Gas Velocity 1.7127 cm/s
Bubble injection frequencies a 2000-point grid on (0, 10]
Initial bubble size 1.0 cm
Observation point 20.0 cm
∆t 0.001 s

Table 4.1: Main parameters for computational simulations of bubbling fluidized beds
using DIBS model

carried out for bifurcation analysis.

To capture the long term behavior, the program runs for a minimum of 700 seconds

and in some cases it runs up to 2400 seconds. The computationally intensive jobs

demand use of high performance computing. The TeraGrid machine, a cluster with

102 teraflops computing capacity at the San Diego Supercomputer, was chosen to

run all simulations. Four compute nodes, IA-64 1.5 GHz per node, were used to run

simulations in parallel. Since each simulation (for a given BIF value) is an independent

task, batch jobs of DIBS simulation for BIF values from a 2000-point grid on (0, 10]

were launched by a Perl script, which is submitted four times into four compute nodes.

Each Perl process runs the bubble simulation program for a subset of BIF values. In

order to obtain a more detailed bifurcation diagram for BIF values inside [4, 6],

simulations were carried out for a 2000-point grid on [4, 6] to create a zoomed-in

picture of bifurcation diagram. The computation time, for instance, for the 2000-

grid on the zoomed-in frequency interval [4, 6] is, approximately, 2.5 hours in each

TeraGird node.

An initial real-time visualization was developed using native graphic functions and

is very helpful for debugging the computer code and for verifying the correctness of the
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[t]

Figure 4.2: Single bubble injector simulations with various bubble injection frequen-
cies. The bubbles below the observation line (laser detector) are colored in blue and
bubbles passing the observation line are painted in red. The bed size is 20cm × 40 cm.
The initial diameter of a bubble being injected from nozzle is 1 cm. The observation
point is right in the middle height of the bed.

implementation. This first version of the bubble visualization software was initially

developed in two-dimensions and displays rich visual information showing bubble

movement (rising upward rapidly) and bubble coalescence. Figure 4.2 shows some

snapshots of numerical experiments with different BIF values. A more sophisticated

three-dimensional visualization display was developed later in studying the bubble

dynamics with multiple bubble injectors and will be shown in the next chapter.

Experiments with observation points at other two locations, h = 10 cm and h = 30
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cm are also carried out in this study. The resulting bifurcation diagrams with these

two observations points demonstrate similar dynamical behavior with great tendency

towards orbits of higher period as the observation point decreases. The time series

analysis work in this research work mainly concentrates on BIF values in Figure 4.2.

4.4 Bifurcation Analysis for Single-Nozzle Injector

In this work, a single bubble nozzle injector case, centered in the bottom of a fluidized

bed, is considered to investigate the underlying bifurcations of bubble dynamics from

DIBS model. A bifurcation diagram is constructed by varying the bubble injection

frequency (f). The computationally based bifurcation analysis shows that the bubble

dynamics transits among different regimes such as fixed point, chaotic attractors and

intermittent behavior. Using time series analysis methods, the embedding trajectories

in phase space with selected embedding dimension shows attractors, etc. and allow

linear fitting to be carried successfully for long term prediction. The maximum Lya-

punov exponents, approximated computationally for a wide range of injection values,

indicates clearly the chaotic behavior of bubble dynamics.

4.4.1 Bifurcation Diagram

The purpose of constructing a bifurcation diagram is to unravel the long term behavior

of a given dynamical system and transitions among different dynamical regimes for

identified bifurcation parameter(s). The BIF values, chosen from a fine grid of 2000

points, evenly distributed on (0, 10], are used for constructing a bifurcation diagram.

For each BIF value, the DIBS simulation runs for 700 seconds to record the time

series, {ti}, bubble passage time through a laser detector. The actual signals, {∆ti},

the time interval between two consecutive data points, are calculated offline. The
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Figure 4.3: The bifurcation diagram of bubble dynamics with the experimental con-
figurations described in Section 4.3. As bubble injection frequency (BIF) is small,
the global dynamics is attracted to a fixed point. As BIF value goes beyond 4.0 to
10.0, the global dynamics changes to chaotic region, period-4 oscillation, four chaotic
attractors, periodic oscillation, a region with intermittent behavior, and then into a
region with nearly a fixed point.

first 200 points of computed {∆ti} are treated as transients and are discarded. A

bifurcation diagram is constructed by plotting the resulting time series against the BIF

values. This computational method has been widely used for constructing bifurcation

diagrams. One typical example is the bifurcation diagram for logistic equation by

Alligood et al. [2]. Figure 4.3 and Figure 4.4(a) are the bifurcation diagrams from

the DIBS simulations for the configurations described in Section 4.3.

At low injection frequencies, bubbles in the fluidized beds are significantly sepa-

rated and the bubble-bubble interactions have very little impact on rising bubbles.

Thus bubbles rise as a stream with almost fixed gap between two consecutive bubbles.

This results in a fixed value in {∆ti}. This demonstrates that the global dynamics

is attracted to a fixed point for low BIF values. As the BIF value increases beyond

f = 4 Hz, bubbles start to coalesce and the global dynamics rapidly changes from
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Figure 4.4: (a) A zoomed-in bifurcation diagram for BIF values in the range [4, 6]
Hz. The diagram demonstrates clearly the transition from a single chaotic attractor,
to period-4 oscillation, to four chaotic attractors, to period-3, to period-2, to period-4
oscillation and finally to intermittent chaotic region. (b) The time series plot for
BIF at f = 5.6 Hz. The dynamics demonstrates intermittent behaviors between
period-6 oscillations and chaotic regions. The plot is constructed by running the
DIBS simulation for 2400 seconds.

a fixed point to a region of quasi-periodic behavior that eventually becomes chaotic.

The global dynamics enters a more organized region of period-4 oscillation for 4.3

Hz < f < 4.7 Hz, roughly. After this region, the period-4 region bifurcates into a

chaotic region with four attractors (see Figure 4.4(a)). Near f = 5 Hz, the dynamics

again enters a region with period-3 oscillation that changes into a period-2 orbit. The

period-doubling bifurcation then leads to a period-4 orbit.

Beyond f = 5.5 Hz, the system displays intermittent behavior in which the under-
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lying dynamics randomly change between a high period orbit, period-6 and a chaotic

attractor. Figure 4.4(b) is the time series plot of {∆ti} from running the DIBS sim-

ulation for 2400 seconds for BIF value at f = 5.6 Hz, which corresponds to the thick

area in Figure 4.3. From the time series plot, the bubble dynamics demonstrates

clearly the intermittent behavior as the system transit among period-6 oscillations to

chaotic regions. This suggests that there are certain flow conditions in which control

may be extremely difficult.

4.4.2 Phase Space Embeddings

Phase space embedding is an important method in studying nonlinear time series.

In a deterministic system, the state for all future times is determined once an initial

state is given. Thus, the idea of phase space reconstruction is to use a one-to-one and

continuous function, more precisely a topological mapping, to embed the one dimen-

sional time series from a deterministic dynamical process into a multi-dimensional

space to disclose the real manifold in which the dynamics takes place and to allow

prediction for future evolution of the dynamical system. A typical technical solution

is the method of delays. Assume {sn} is a given time series. New vectors are formed

by defining the delay coordinates as:

~s =
(
sn−(d−1)τ , sn−(d−2)τ , ..., sn

)
, (4.1)

where d is called the embedding dimension and τ is delay or lag.

The embedding theorems established by Takens [72] in 1981 and Sauer et al. [65]

in 1991 guarantee the existence of such d (when d is sufficient large) so that the time

delay embedding produces a true embedding from original time series to the space

Rd.

The embedding dimension d reveals that there are d independent measurements
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Figure 4.5: A plot for the results using false nearest neighbor (FNN) method im-
plemented in TISEAN software for the time series at f = 4.2. The plot shows that
a good estimate for the embedding dimension is d = 3. This is because there is a
significant drop in the percentage of false nearest neighbors when d changes from 2
to 3. The embedding dimension d = 3 is empirically determined from this graph.

within a given time series. It is then natural to ask how to find the minimum embed-

ding dimension as the existence of such numbers is guaranteed. The computational

method adopted by this study to find the minimum embedding dimension is the false

nearest neighbor (FNN) method originally proposed by Kennel et al. [43] and was

implemented by Hegger et al. [38, 41] in their TISEAN software package. The FNN

method is based on the idea that neighboring points of a given point are also mapped

to neighbors in delay space by a true embedding. For a delay map with embedding

dimension d < dmin, such topological properties would no longer be preserved and

would produce false neighbors after mapping into the delay space.

In the DIBS model, the local dynamics of a single bubble injector will be dom-

inated by pairwise interactions between leading and trailing bubbles. The bubble

stream also tends to collapse toward the bed center as the bubbles rise. This should

tend to reduce the effective local dynamical dimension considerably. Based on these
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Figure 4.6: Time series plots and their corresponding phase portraits for the data
from DIBS simulations. Two pictures on left side are the time series plots for f = 4.2
and f = 4.6. The pictures on the right side are the phase portraits using embedding
dimension d = 3.

facts, it is reasonable to expect the crossing dynamics to be described by a map of the

form ∆tn+1 = G(∆tn, ∆tn−1) for the time series from the DIBS simulation. Namely,

the anticipated embedding dimension required to resolve the local dynamics to be

close to a value of d = 3. Figure 4.5 shows the resulting plots after applying FNN

algorithm from TISEAN package for the time series from the DIBS simulation with

BIF value at f = 4.2 Hz. Notice there is less than 0.1 change of the false nearest

neighbors when d changes from 3 to 4. It is then reasonable to assume that the re-

quired embedding dimension is d = 3. This result matches the expected embedding

dimension. Other results show the embedding dimensions to be d = 3 for various BIF

values.
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Proceeding with an assumed dimension of d = 3, the time delay map for the DIBS

model can be written as: ∆Tn = (∆tn, ∆tn−1, ∆tn−2). Figure 4.6 shows two time series

plots and their phase space embedding portraits for two BIF values, f = 4.2 Hz and

f = 4.6 Hz. The phase portrait for f = 4.2 shows an attractor after the time series

of bubble passge time is embedded into phase space.

4.4.3 Model Fitting

With the embedding dimension determined to be d = 3, the embedding function of

the time series to phase space becomes ∆Tn = (∆tn, ∆tn−1, ∆tn−2). With the new

embedded points on the trajectory in phase space, a typical question would be to

find a map, at least computationally, to model the deterministic evolution of the new

time series {∆Tn}, namely, we seek a nonlinear map of the form: ∆Tn+1 = F (∆Tn),

for the purpose of forecasting future trajectory in phase space, eventually for original

time series, as is depicted in Figure 4.7. Many nonlinear prediction models for time

series have been studied since early 1990s. Well-studied models are global polynomial

model fitting and local linear model fitting. The resulting fitting map then can be

used computationally to forecast the future trajectory and to evaluate the Lyapunov

exponent spectrum.

The local linear model was introduced by Eckmann et al. [23] in 1986 and Farmer

et al. [26] in 1987. This model is first chosen to do the fitting for the time series of the

bubble dynamics. With the embedding vector as ∆Tn = (∆tn, ∆tn−1, ∆tn−2), both

Tn and Tn+1 have the same ∆tn and ∆tn−1. Thus it suffices to find a map f for the

last component such that ∆tn+1 = f(∆Tn). The simplified case leads to approximate

f by a linear function of the form f(∆Tn) = ~an · ∆Tn + bn. The vector ~an and the
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Figure 4.7: Model Fitting for Dynamical System. The phase space map, F , is the
fitting nonlinear map based on embedded points from a given time series. The map
can be used to forecast future trajectory and to compute the Lyapunov spectrum.

scalar bn are then found by minimizing:

M∑
i=1

‖∆tn+1 − ~an ·∆Ti − bi‖ (4.2)

where M is the total number of time delay vectors.

The TISEAN software provides two routines, onestep and nstep, that implement

the local linear fitting algorithm for a given time series. The onestep takes input of

time series data and outputs the forecasted error with the local linear fitting model.

The important arguments in using the routine are the embedding dimension, delay,

and neighborhood size. The routine, nstep, uses the same inputs as those for onestep

and it produces the predicted trajectory by applying the fitting algorithm with the

given time series data. Detailed information of the TISEAN software can be found

in the online manual by Hegger et al. [37].

For the time series of bubble dynamics generated by DIBS simulations, the local

linear fitting works very well for a wide range of BIF values up to f = 5.55 Hz. Figure
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4.8 shows the predicted trajectories (in black) of 2000 iterations and the input time

series from DIBS simulation (in green) at two representative BIF values at 4.2 Hz

and 4.8 Hz. The relative forecast errors, defined to be the normalized errors to the

variance of the data, for f = 4.2 Hz and f = 4.8 Hz are 0.215 and 0.068, respectively.

Figure 4.8: Using data fitting technique, a map F can be constructed to forecast
future trajectory and to compute the Lyapunov spectrum. The black dots in the
graphs are original time series formed by bubble passage time. The black dots are
the predicted data generated by the local linear prediction method.

Beyond f = 5.55 Hz, where the system exhibits intermittency between periodic

orbits and chaotic attractors, both approximation methods, local linear fitting and

global nonlinear multivariate polynomial fitting, failed to produce adequate long-term

predictions.

4.4.4 Lyapunov Exponent

Lyapunov exponents indicate the future growth and decay rate for a small initial per-

turbation as is depicted in Figure 4.9. It is a quantitative measure for the sensitivity

of a dynamical system on initial conditions. It is also an important indicator for a

dynamical system to have a potentially chaotic behavior.
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Figure 4.9: Small Perturbation and Lyapunov Exponent. The value of Lyapunov
Exponent indicates future growth or shrinkage rate for a small perturbation in a
dynamical system. It is also an indicator for a dynamical system to have chaotic
behavior.

For a one-dimensional discrete map, xn+1 = F (xn) and a given initial state x0, the

maximum Lyapunov exponent is defined to be the logarithmic value of the divergence

between two trajectories separated by a small perturbation ε0 :

λ = lim
n→∞

λ(n) = lim
n→∞

1

n
ln

(
‖fn(x0 + ε0)− fn(x0)‖

‖ε0‖

)
. (4.3)

By computing the maximum Lyapunov exponents for the time series from DIBS

simulations, {∆Tn}, the rates, at which neighboring orbits on each individual attrac-

tor diverge (or converge), can be quantified as the time-passage dynamics evolves in

time.

Many computational algorithms have been proposed for computing an estimate

of the maximum Lyapunov exponent. The TISEAN software package implements

two main algorithms for computing the maximum Lyapunov exponent. One is the

algorithm by Rosensetein et al. [64] and by Kantz [40], which tests directly the ex-

ponential divergence of nearby trajectories. Another algorithm is to compute the

Lyapunov spectrum by estimating the local Jacobians from a fitting model in em-
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bedding space. Unfortunately none of these works with the time series from DIBS

simulations when BIF values are very small. This is obviously because the software

quickly encounters singularities when computing on a series of fixed numbers.

Notice that the above algorithms target finding a numerical estimate of the max-

imum Lyapunov exponent for a given time series. With the DIBS simulation, we

finally chose a simpler approach: a small perturbation can be achieved by delaying

one bubble with a small time δt by moving the bubble with a small distance in the

vertical direction at some time t1 in the DIBS simulation. It is crucial that the time

series from the perturbed DIBS simulation is created from the same dynamical sys-

tem. If two bubbles that do not coalesce in original system below the observation

point, for example, merge after perturbation, the original time series and the per-

turbed time series are created actually from two different dynamical systems. To

avoid such problem, we developed a perturbation scheme in which the computational

program keeps looking for a pair of neighboring bubbles under the observation point

that have fairly large gap between them, e.g., 1 cm (the bed height is 40 cm). Once

the program finds such pair of bubbles, the top bubble is perturbed with a small

distance that is much smaller than 1 cm.

An estimate of the maximum Lyapunov exponent is computed by averaging λ(n)

in Eq. (4.3), for the purpose of obtaining a more statistically meaningful measure of

the maximum Lyapunov exponent, with the formula:

λ =
1

N

N∑
i=1

λ(i). (4.4)

In practice, a small perturbation of δt = 0.05 generates very good results of

maximum Lyapunov exponents for a wide range of injection frequencies as is shown

in Figure 4.10. Observe that the sign of the exponent agrees with the attractor

depicted by the bifurcation diagram. That is, for low frequencies, the largest exponent
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is negative, indicating convergence towards the fixed point, as is normally observed

in laboratory experiments as well as in the DIBS simulations. A positive Lyapunov

exponent along with the fact that {∆tn} has an upper bound (which will be explained

next) is indicative of deterministic chaotic behavior in the passage-time dynamics.

Another important fact is the existence of an upper bound for the time series

{∆tn} . From formula (3.8) for the velocity of a rising bubble, we can see that

the velocity term has a lower bound, denoted as ‖v‖min , that is attained once the

experimental parameters, such as bed size and initial bubble diameter, are fixed.

Thus the upper bound for crossing time, namely for the time series {∆tn} is:

∆ti ≤
Hmax

‖v‖min

+
1

f
, (4.5)

where Hmax is the maximum height of the bed and f is the bubble injection frequency.

Figure 4.10: Computational results of maximum Lyapunov exponents of bubble dy-
namics for various values of injection frequencies. A positive exponent is indicative
of chaotic behavior in the system’s dynamics. Fixed points in time series match well
with negative Lyapunov exponents.

For frequencies larger than f = 5.55 Hz, the sign of the largest exponent is mainly

positive. In this region, however, the time-passing dynamics is not only chaotic but
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rather intermittent, randomly switching between chaotic attractors and high-period

orbits. Observe also that the maximum Lyapunov exponent is zero at the points of

bifurcation where the system dynamics changes behavior.

The presence of intermittency in the bifurcation sequence is likely to be difficult

to observe experimentally because of the presence of parametric noise, e.g. from gas-

flow turbulence or granular particle flow. Such noise would be expected to continually

stimulate intermittent jumps in these areas of the bifurcation sequence, thus causing

the periodic features to be blurred into an apparent broad band of chaos.
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Chapter 5

Spatio-Temporal Analysis of
Fluidized Beds

With multiple bubble injectors, the bubble dynamics becomes more complicated.

Bubble coalescence not only happens in the vertical direction but it also occurs in

various directions. As bubble injection frequency increases, a large number of bubbles

are present in the fluidized bed, moving upward and coalescing with each other. To

capture the bubble dynamics with multiple injectors, the bubble dynamical process is

digitized into frames to construct a data matrix. By applying the proper orthogonal

decomposition method, spatial and temporal information are decoupled. Energy plots

can be constructed to review the dominant modes for the dynamical system, while

time series analysis techniques can be applied to study the temporal behavior captured

by the time-dependent coefficients associated with the spatial modes.

5.1 Proper Orthogonal Decomposition

The Proper Orthogonal Decomposition (POD) has been widely used for data analysis

in fluid dynamics, identification and control in chemical engineering, oceanography,

image processing, and biomedical engineering. By determining an optimal basis for
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the reconstruction of a given data set, the POD is a technique used to reduce a

multidimensional dataset to lower dimensions. The POD is also known as principal

components analysis (PCA), Karhunen-Loéve decomposition, and singular value de-

composition [42, 48, 61]. By applying the technique for the digitized bubble dynamics,

the POD creates spatial and temporal decompositions for the given multi-dimensional

input. This allows us to carry time series analysis for the resulting time series of tem-

poral evolution data and apply the appropriate prediction model. To understand this,

a brief review of the theoretical aspects of the POD analysis is necessary.

A multi-dimensional time series data can be viewed as data points from scalar

functions u(x, ti), i = 1, 2, ...M . These functions are assumed to form a linear infinite-

dimensional Hilbert space L2 on a domain D, a bounded subset in Rn, and are

parameterized by ti, which represents time.

The POD extracts time-independent orthogonal basis functions, Φk(x) , and time-

dependent orthogonal amplitude coefficients, ak(ti) , such that the reconstruction of

the data points

~u(x, ti) =
M∑

k=1

ak(ti)~Φk(x), i = 1, 2, ...,M, (5.1)

is optimal for the least square fit for〈∥∥∥∥∥~u(x, ti)−
m∑

k=1

ak(ti)~Φk(x)

∥∥∥∥∥
2〉

, (5.2)

for any given number m ≤ M over any subsets of orthogonal basis. Here ‖·‖ represents

the L2-norm. The 〈·〉 is the time average for a given sequence from scalar functions

by:

〈~u(x, ti)〉 =
1

M

M∑
i=1

~u(x, ti). (5.3)

The functions {Φk(x)} are called empirical eigenfunctions or POD modes and are the
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eigenvectors for the tensor product matrix:

R =
1

M

M∑
i=1

~ui ~ui
′, (5.4)

i.e.

R~Φk = λk
~Φk. (5.5)

The important fact about this decomposition is that it generates spatial and temporal

decompositions {~Φk} and {a1(ti), a2(ti), ..., aM(ti)}. Thus for each k, ak(ti) forms a

single time series as ti evolutes in time. This allows us to have spatial and temporal

decompositions for a given multi-dimensional time series and carry time series anal-

ysis.

Figure 5.1: The procedure of the Proper Orthogonal Decomposition(POD). The data
matrix is formed by aligning each frame data into one column in the data matrix
U . {λ1, λ2, ..., λN} are eigenvalues from the symmetric matrix (1/M)U ′U and are the
results from the method of snapshots along with the matrix (ai(tk)).

A computational method, known as the method of snapshots, was developed by

Sirovich [70] in 1987 for computing the spatial and temporal decompositions for a

given data set from observations. It is based on the fact that both original data
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vectors {uk} and eigenfunctions {~Φk} span the same vector space. Therefore, we can

write

~Φk =
M∑
i=1

vk
i ~ui, k = 1, 2, ...,M . (5.6)

Combining Eqs. (5.3) and (5.4), the coefficients vk
i can be obtained by calculating

the eigenvectors of the eigenvalue problem: Cv = λv , where C is the symmetric

matrix defined by cij = (1/M)(~ui, ~uj), with (~ui, ~uj) being the inner product of two

vectors in a Euclidean space. Therefore, the eigenvectors of the N × N matrix R

can be obtained by computing the eigenvectors of the M ×M matrix C. Figure 5.1

depicts the procedure of applying the method of snapshots to obtain the spatial and

temporal decomposition from an input matrix, which is made up of the experimental

data from running bubble simulations with multiple injectors.

The eigenvectors of the matrix C can be computed by using the iterative QR

method. The method of snapshot guarantees that non-negative eigenvalues, {λk}, of

C are ordered in the decreasing order. In physical science, each λk represents the

amount of energy for the corresponding mode, Φk(x). Thus the contribution of each

mode for the dynamical system can be measured by its eigenvalue. The ideal case in

doing POD analysis is that a few leading modes control 80% of total energy of the

whole dynamical system. The total energy for a given experimental data set after

POD decomposition is defined as the sum of all eigenvalues,

E =
M∑

k=1

λk. (5.7)

The contribution of one particular mode to a dynamical system can be quantified

as Ek = λk/E. Thus
∑K

k=1λk/E is the measure for the contributions of K leading

modes.
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5.2 Digitization of Bubble Dynamics

In order to apply the POD analysis, the bubble dynamics must be digitized to produce

multi-dimensional time series by recording the images obtained from computer simu-

lations. The digitization process will mimic one of the popular methods in studying

fluidized beds via imaging system, in which the interaction between solids and fluids is

continuously tracked. To digitize the bubble dynamics with multiple bubble injectors,

rising bubbles are traced based on their projections onto a two-dimensional plane. A

similar method is also used in studying spouting fluidized beds in which the actual

fluidization process was recorded by video camera with lights in the other end of the

fluidized bed at Oak Ridge National Laboratory. With the computer simulations, the

projection of bubbles onto a two-dimensional plane can be easily traced numerically

from the bubble data, including bubble positions and sizes. The computer program

periodically produces one frame of data for bubbles inside the simulated fluidized bed

and saves the information into a data file.

To generate one frame of data, a grid with pre-determined size is set on the

projected rectangular area. For each block inside the grid, the area covered by the

projected bubbles is computed. Then the fraction of covered area versus the area

of the block is evaluated and is saved as the value for the block, or one component

for the output vector of final multi-dimensional time series. Figure 5.2 demonstrates

the procedure to compute one frame of digitized data for bubble dynamics inside a

fluidized bed. When a fine grid is set to digitize the dynamical information, each

small block can be viewed as a pixel in the whole image. Each block value comprises

one cell value in the matrix for a digitized video frame. Then the data in the matrix

is aligned into one column for the POD analysis.

Computing power must be considered in choosing the grid size. Although a finer
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Figure 5.2: A schematic diagram for constructing one frame of digitized data for
bubble dynamics. Rising bubbles are projected onto a plane. A grid is set on the
rectangle area and the data in each block of the grid is computed based on the area
covered by bubbles. A frame of digitized data is created and is aligned to form one
column in the final matrix for POD analysis.

grid may create more accurate digitized information, the resulting data matrix can

easily have the size beyond the computing capability of current computers. In the

case of a 22× 70 grid, 3520 frames were collected from bubble simulation, yielding a

final data matrix of size 1540× 3520.

5.3 POD Analysis of Bubble Dynamics with Mul-

tiple Injectors

In the DIBS simulation, multiple injectors are evenly distributed in the bottom plate.

There are two options for generating bubbles. In the first option, all bubble injectors

create new bubbles simultaneously. In the second option, bubbles are generated from

randomly selected injectors. This is implemented by generating a random number of

0 or 1 for each injector to determine if a bubble needs to be formed. Since we are

mainly interested in deterministic dynamical systems, the first option is selected for
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Figure 5.3: DIBS simulations with nine bubble injectors and their digitized frames.
The images on the top are snapshots taken from the 3D real-time visualization for
bubble simulation with multiple injectors. The images in the bottom are their cor-
responding images of digitized frames. The values in the matrix of a digitized frame
are normalized.

our study and we leave the second bubble injection mode for future work.

Numerical experiments are first conducted with nine injectors that are sparsely

distributed on the bottom plate with simultaneous bubble injection mode. The mo-

tivation is based on intuition that the behavior of the bubble dynamics should have

similar patterns as those observed in a single bubble injector case since nine injectors

are sparsely distributed. Several data points are picked from (0, 10] for BIF values
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to conduct our research. A 3D visualization for the DIBS simulation is developed

to monitor bubble dynamics in real-time. The top four images in Figure 5.3 show a

group of snapshots from simulations with the BIF values taken at f = 0.5, f = 3.5,

f = 6.5 and f = 9.5 Hz. Four pictures in the bottom of Figure 5.3 are the snapshots

for the digitized frames with the chosen BIF values.

Figure 5.4: The energy distribution plots for four bubble injection frequencies after
POD decomposition. The pictures demonstrate that usually it needs first 200 − 400
modes to gain the 80% of the total energy.

Nine bubbles are generated simultaneously and move upward in parallel and form

a layer of bubbles in the testbed. With small BIF value, there is a large distance

between two layers of bubbles and thus there is no interaction or bubble coalescence
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among bubbles. As the BIF value passes over a threshold around 1.0 Hz, bubbles

start to interact with each other and coalesce. One common phenomenon with large

BIF values is the channeling in which bubbles tend to collapse into the middle of the

testbed. The pictures of the 3D visual display in the top of Figure 5.3 show such

channeling behavior for BIF values at 3.5, 6.5 and 9.5 Hz.

To carry out the POD analysis, a 22 × 70 grid is used to digitize each frame in

running the DIBS simulation with multiple bubble injectors. A total of 3502 frames

are collected for each BIF value. This generates a data matrix of size 1540 × 3502

for each BIF value. Our POD analysis program is encoded in Matlab and uses a

built-in routine for SVD decomposition. Figure 5.4 displays the energy distribution

plots from POD decomposition for the chosen bubble injection frequencies.

Figure 5.5 shows the most dominant eight modes for the DIBS simulations with

four frequencies. The modes are used, based on the POD theory, to re-construct the

bubble dynamics through time series coefficients. Mathematically, all modes form a

basis for the multivariate time series from the digitized dynamical process. The energy

distribution plots in Figure 5.4 show at least 200 modes are required to capture 80%

of the bubble energy when the frequency of injection is f = 0.5 Hz and at least 400

modes for f = 3.5, f = 6.5 and f = 9.5 Hz.

Besides the energy distribution and mode information, the main result from the

POD decomposition is the time series for the temporal coefficients. Figure 5.6 shows

the time series plots of the time-dependent coefficients associated with the most dom-

inant mode, a1, for twenty BIF values ranging from 0.5 to 10.0. This provides some

insight into the overall bubble dynamics with multiple injectors since they represent

the projections of the evolution over time for the bubble dynamics onto one direction

of the orthogonal base.
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Figure 5.5: Plots of first eight POD modes of DIBS simulations with four bubble
injection frequencies. All modes form an orthogonal basis.
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Figure 5.6: Time series plots of POD temporal coefficients for the first coefficient
a1(t) from DIBS simulations with ten BIF values from 0.5 to 9.5. The time series
plots reveal some transitions of dynamical behavior from a near fixed point for low
BIF to complicated behavior and then to a simpler dynamics, which is similar to the
case with one bubble injector.
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When the BIF value is small, the time series is near constant which corresponds

to a fixed point in a dynamical system. As the BIF is increased, bubbles inside the

fluidized bed start to interact with each other in every possible direction. The time

series plots reveal the complicated dynamical behavior when BIF is between 1.5 and

3.5. After f = 4.5, the system shows a less complicated behavior and then becomes

gradually complicated as f increases from 6.9 Hz to 7.0 Hz. These transitions of the

dynamical behaviors have indeed similarities to those in the single bubble injector

case that we analyzed in Chapter 4.

Figure 5.7: The embedding phase portraits of POD temporal data for the first coeffi-
cient, a1(t), with four different BIF values. When f = 3.5 Hz, a limit cycle is present
from the embedded plot with embedding dimension 3.

To further understand the dynamics of the temporal evolution, techniques such

as phase embedding, phase reconstruction, and model fitting, which have been de-

scribed in detail in Chapter 4, can be applied. Figure 5.7 depicts phase embedding
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plots of {a1(t)} for four chosen BIF values, which show that the existence of limit

cycles for lower injection frequencies. The correlations between time evolution coef-

ficients are also sought by constructing plots for three neighboring coefficients such

as {a1(t), a2(t), a3(t)} and {a2(t), a3(t), a4(t)} in Figure 5.8 (see next page). The dia-

grams show clearly the existence of periodic trajectories for the first three dominant

temporal coefficients.

Notice that the POD analysis is more effective when there are a few modes dom-

inating the overall dynamics. Empirically, this is quantified as a few modes, say 20

modes, containing at least 80% of total energy. Although there are some indications

of transitions of bubble dynamics from studying the time series of temporal coeffi-

cients and their correlations via POD decomposition, we realize that a direct POD

decomposition still has its limitations in dealing with the case of multiple bubble

injectors. This is because too many modes are needed to capture and reconstruct the

original spatio-temporal dynamics. Note that the total number of vectors in the final

orthogonal basis from the POD decomposition is 1540. A quick observation for the

mode plots in Figure 5.5 reveals that, indeed, the POD analysis requires quite sig-

nificant amount of orthogonal sub-basis to be able to reconstruct the original bubble

dynamics. This will also be true for a POD decomposition of a three-dimensional

discretization of bubble dynamics with multiple injectors by considering the fact that

the two-dimensional projection is a subset of three-dimensional discretiziaton.

60



Figure 5.8: Correlations between the POD temporal coefficients are plotted for three
neighboring coefficients. The diagrams show clearly the existence of periodic trajec-
tories for the first three dominant temporal coefficients.
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5.4 POD Analysis of a Spouting Bed

Spouting fluidized bed is one type of the fluidized beds that has major applications in

petrochemical and metallurgic industries. When dealing with typically large particles

that are difficult to fluidize with gas medium, a spouting bed is used to carry parti-

cles by a single gas jet. With a strong and sufficient gas flow, particles are entrained

upward and finally rain down like a fountain. The particles then continue to move

downwards until they are entrained again by the central gas jet and thus circulate in

the fluidized bed for chemical reaction or heat transfer. Figure 2.2(b) in Chapter 2

depicts a schematic diagram for a spouted fluidized bed.

Figure 5.9: A schematic diagram of experimental spouting fluidization apparatus by
Palacios et al. The projection of fluidization is recorded by a video camera at Oak
Ridge National Laboratory for studying spouted beds.

In recent work [56], we carried out some spouting fluidized bed experiments and

applied successfully the POD method for the data analysis of spouting beds. Data is

actually collected by recording videos for the experiments of spouting fluidized bed.

The apparatus was constructed at the University of Tennessee for the Oak Ridge

National Laboratory, including a vessel for fluidization of spherical zirshot (ZrO2), air
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Figure 5.10: Images on the top are recorded video images for the spouting bed from
experiments for jet velocity at v = 43 m/s. The spouting behaviors have variations.
The images in the bottom portion are the POD spatial modes computed from recoded
video image at same jet velocity. The first 20 modes contribute the 80% of the jet
fluidization behavior.
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jet nozzle, lights and digital video camera (Figure 5.9). The flowing medium in the

experiment is the air that is regulated to pass through a sintered-metal distributor.

A central nozzle is placed in the vessel centerline and the controlled flow air passes

through the nozzle to create a fluidized bed. The jet velocity of the central nozzle is

adjustable as the experimental parameter. For the experiments, velocities are chosen

between 23 and 43 m/s. The top images in Figure 5.10 form a montage of video

frames for the spouting bet experiment with jet velocity at 43 m/s. A closer look

reveals each image has its own variations, indicating there is no steady state.

Figure 5.11: Energy distribution plots up to first 20 modes from POD analysis on
the spouting bed with jet velocities at v = 23, v = 31, 39, and 43 m/s. All of them
shows first 20 modes contain 80% of total energy.

From the experiments with various jet velocities, the POD analysis shows that 20

modes are sufficient to capture 80% of the total fluidization behavior. Figure 5.11

shows the energy spectrum for the first 20 modes from POD analysis for jet velocity
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v = 43 m/s. The plot also shows that first two modes contain about 25% of POD en-

ergy. Obviously, the higher energy modes contribute more to the jet and gas-particle

interaction. The images in the bottom portion in Figure 5.10 are the plots of the

first nine spatial modes for the same jet velocity. Other mode plots reveal that low

energy modes also contribute to the fluidization behavior located near the bed surface.

Figure 5.12: The embedding phase plots of measured pressure data for four jet veloc-
ities at v = 23, 31, 39, 43 m/s. The existence of low-dimensional periodic behavior
in which a period-doubling bifurcation appears to occur as jet velocity decreases.

Besides the video images, the pressure inside the spouting bed is also measured

and a Poincaré map is constructed based on the collected time series of pressure

data. Figure 5.12 displays four embedding plots for pressure data with jet velocity at

v = 23, 31, 39 and 43 m/s. The plots reveal the existence of low-dimensional periodic

trajectory that undergoes a period-doubling bifurcation as the jet velocity decreases.

The success of separating dominant spatial data and temporal evolution data
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suggests the possibility of reconstructing the low-dimensional dynamics via Galerkin

projections from an originally PDE model of three-phase gas-solid-bubble system onto

the POD modes. This task is not, however, part of this thesis project.
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Chapter 6

Emulsion Phase Dynamics

6.1 Computational Simulations

As described earlier in Section 2.3, flowing gas and fine particles form the emulsion

phase in a fluidized bed. Bubbles that move vigorously upward impact the motion of

emulsion phase and vice versa. Thus it would be realistic to include the interactions

between bubble phase and emulsion phase into the computational model. When using

Eulerian approach for all phases in a fluidized bed, the coupling function that models

interactions among different phases is included in the governing equations. For the

Eulerian-Lagrangian approach, in which a discrete mode is used to trace bubbles such

as the DIBS model and Kuipers’ DBM model, the coupling function between bubbles

and emulsion phase is not obvious. We explain this point in more detail next.

As mentioned in Section 3.2.1, the emulsion phase is affected by bubble phase

through the calculation of volume fraction in both the continuity equation and the

Navier Stokes equation, for both DIBS and DBM model. This is only a one-way

coupling. Regarding the influence of emulsion phase over bubble phase, the DBM

approach by Kuipers et al. [7] indicates that the emulsion phase affects the bubble

force balance of bubbles through the slip velocity and virtual mass force. Thus the
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DBM model, a Newtonian approach in modeling bubbles, is truly two-way coupled

with emulsion phase.

For our DIBS model, a straightforward approach can be derived to describe the

impact of emulsion phase on bubbles. As described in Section 3.2.2, we present a

simplified one-dimensional case, in which a fluidized bed is discretized into slices

in the vertical direction to compute the averaged velocities of emulsion phase in

each slice. Since bubbles in a fluidized bed move upward mainly due to buoyancy

force, the motion of emulsion phase will certainly affect bubble movement. Note

that assumption (vii) for the DIBS model in Section 3.1.2 has not been used when

performing computational DIBS simulations. The two-way coupling for both bubble

phase and emulsion phase can be realized by modifying the formula for actual bubble

rise velocity in the vertical direction with the emulsion velocities obtained from solving

the one-dimensional continuity equation. Thus the bubble velocity can be adjusted

by:

ub,x = vi,x (6.1)

ub,y = vi,y (6.2)

ub,z = vi,z − uemul, (6.3)

where, referring to Figure 3.3, vi,x, vi,y, and vi,z are axial projections of bubble rising

velocity from Eq. (3.8), ub,x, ub,y, and ub,z are actual bubble velocities in x, y, z

directions. uemul is the emulsion velocity and is computed through our continuity

equation using finite difference method through Eq. (3.15) in Chapter 3. This two-

way coupling method was established independently during a project discussion by

Sreekanth Pannala at Oak Ridge National Laboratory, A. Palacios and P. Blomgren

at San Diego State University, and myself in December 2007. It was later found that

this method was first described by S. Godo [33] et al. in 2004. However, Godo used

a different bubble velocity model by Lapin et al. as was mentioned in Chapter 3.
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Figure 6.1: Bifurcation diagrams of revised model with coupled bubble and emulsion
phases. The edges along attractors and periodic solutions are smoothed out. four
attractors in the area between f = 4.72 and f = 4.86 Hz are collapsed into two
attractors.

6.2 Bifurcation Analysis with Revised Model

With two-way coupling between bubble and emulsion phases, the bifurcation analysis

in previous chapters is expected to undergo some changes. We start again with the

case of a single injector, in which case the changes of bubble dynamics is expected to

be small since there is only a single stream of bubbles.

Figure 6.1 is a reconstructed bifurcation diagram for the time series of the time
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intervals between two passing bubbles, {∆ti} (see Section 4.4.1). In general, the bi-

furcation diagram seems to be close to the one in Figure 4.3. This is expected since

the bubbles with single injector in the testbed should have very limited impact on

emulsion phase. But detailed analysis shows some subtle changes after bubbles are

coupled with the emulsion phase. Compared with the bifurcation diagrams in Figure

4.3 and 4.4(a), the edges along attractors and periodic solutions are smoothed out,

four attractors in the area between f = 4.72 and f = 4.86 Hz are collapsed into

two attractors, and a better single-period solution appears for frequencies between

f = 9.12 and f = 10 Hz.

Figure 6.2: Embedding Dimensions for Revised Model. The plots show the results
using the false nearest neighbor algorithm. From the plots, it can be concluded
empirically that d = 3 for f = 4.2 and f = 4.8 Hz, d = 5 for f = 4.6 Hz and d = 2
for f = 6.0 Hz.

To obtain the embedding dimension, the FNN method described in Section 4.4.2

is once again applied to evaluate the fractions of false nearest neighbors for chosen

BIF values at f = 4.2, f = 4.6, f = 4.8 and f = 6.0 Hz, and the results are plotted in
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Bubble Injection Frequency (Hz) 4.2 4.6 4.8 6.0
d (original DIBS) 3 3 3 −
d (revised DIBS ) 3 3 4 2

Table 6.1: Comparison of embedding dimensions for four chosen BIF values between
the original DIBS model and the revised DIBS-emulsion model.

Figure 6.2. From the plots, the embedding dimensions can be empirically concluded

to be d = 3 for f = 4.2 and 4.8 Hz, d = 5 for f = 4.6 Hz, and d = 2 for f = 6.0

Hz. With these results, the local linear fitting routine, nstep, is employed to compute

the predicted trajectories for these four BIF values. For f = 4.2 Hz and f = 4.6

Hz, the local linear fitting routine works well with the embedding dimensions of 3.

Although the embedding dimension for f = 4.8 appears to be 3, the linear fitting

routine failed to create predicted trajectories. But it works better when d is chosen

to be d = 4. For f = 6.0 Hz, the linear fitting works well with expected d = 2 based on

the corresponding FNN plot in Figure 6.2. Table 6.1 lists the changes in embedding

dimensions between the original DIBS simulations and the revised DIBS-emulsion

model.

The results of simulation data with the revised DIBS model and the predicted sim-

ulation data are plotted in Figure 6.3 in green and in black, respectively, for the same

selected BIF values. Note that, at f = 4.8 Hz, the predicted data is actually created

with embedding dimension d = 4 and the plot shows nice fit between the predicted

the data and simulation data. In Section 4.4.3, we showed intermittent behavior of

bubble time series and indicated that methods for future data prediction failed to

work for f > 5.55 Hz. However, this is no longer true for the revised model. The

numerical experiments and the local linear fitting method show, surprisingly, that the

embedding dimension is d = 2, indicating an interesting change from the intermittent

behavior in the original DIBS simulation for f > 5.55 Hz to low dimensional chaos in

the revised DIBS-emulsion coupling model. The relative forecast errors for f = 4.2,
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Figure 6.3: Local linear fitting model works for f = 4.2 with embedding dimension
d = 3, and for f = 6.0 Hz with d = 2. It works, however, for f = 4.8 Hz only when
the embedding dimension is d = 4. The original bubble data is plotted in green while
the predicted trajectories are in black.

f = 4.6, f = 4.8, and f = 6.0 Hz are 0.246, 0.007, 0.009, and 0.55, respectively.

6.3 Ozone Concentration

In an ozone fluidized bed reactor, the flowing medium is gas containing ozone. As

ozone enters the fluidized bed uniformly from the bottom, certain amount of ozone is

decomposed through interactions with catalyst, sand particles, and then is converted

into oxygen in the emulsion phase during the fluidization process.

In practice, each bubble in an ozone fluidized bed contains little solids while the
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Figure 6.4: A schematic diagram of bubble, cloud and emulsion.

wake of a bubble has a significant amount of solids. There is a region, called cloud,

between a bubble and its surrounding emulsion phase as is illustrated in Figure 6.4.

In 1991 Kunii and Levenspiel [45] developed the following mass transfer correlations.

1

KBE

=
1

KBC

+
1

KCE

, (6.4)

KBC = Q/V =
4.5Umf

D
+

5.85D0.5
G g0.25

D1.25
, (6.5)

KCE = 6.78(εmfDGubD
−3)0.5, (6.6)

where KBE is the overall gas exchange coefficient between bubble and emulsion, KBC

is the exchange coefficient between bubble and cloud, KCE is the exchange coefficient

between cloud and emulsion, D is the diameter of the bubble, DG is the gas diffusion

coefficient, εmf is the void fraction at minimum fluidization, and ub is the bubble

velocity.

The ozone concentration at the exit of a bed for each exiting bubble is computed

at each time point that is multiples of initial time step size, namely, n · ∆t for n =

1, 2, 3, ... Then the following formula is used to evaluate ozone concentration for all
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exiting bubbles:

cexit =

∑
exiting−bubbles

(Vbub · cbub,i) + Umf ·∆t · Abed · cbed,exit∑
exiting−bubbles

Vbub + Umf,new ·∆t · Abed

, (6.7)

where cexit is the ozone concentration at the exit of the bed, Vbed is the bubble vol-

ume, cbub,i the ozone concentration in the i-th exiting bubble, Umf,new is the corrected

minimum fluidization, and Abed is the area of the bed. Finally the averaged ozone

concentration forms one data point for a given gas superficial velocity in Figure 6.5.

Figure 6.5: Comparison of ozone concentrations at outlet with four sets of config-
urations of bed height (Hmf ) at minimum fluidization and reaction rate of ozone
decomposition (k). The computational results demonstrate fairly good match with
the data from actual experiments, especially for the cases with large gas velocities.

For calculating ozone concentrations, the initial size of each new formed bubble is

determined with the two-phase model, i.e., based on the difference between the gas
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superficial velocity and minimum fluidization velocity. This is slightly different from

the simulations in previous bubble bifurcation analysis in which initial bubble size is

to be chosen with a predefined fixed size.

We ran the simulations by varying the gas (superficial) velocities, the reaction

rates for ozone decomposition, and the bed initial heights, along with other configu-

rations used by Fryer and Potter [29] and compared results among three approaches:

measured results from the actual experiments carried by Fryer and Potter in 1976,

computational results using the original DIBS model by Pannala in 2003, and our

results using a revised DIBS model. Figure 6.5 shows the plots for the simulations

with four sets of initial values.

When gas velocity is low, the revised DIBS-emulsion model shows significant dif-

ference in ozone concentrations compared to those obtained by Fryer and Potter. In

particular, the revised DIBS model appears to show higher concentrations for low ve-

locities. As gas velocity increases, the computational results demonstrate fairly good

match with the data from actual experiments. This suggests that further tuning of

the rules that make up of the DIBS model may be necessary.
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Chapter 7

Conclusions and Future Work

Using a low-dimensional, agent-based bubble DIBS model, rising bubbles in a flu-

idized bed are simulated computationally in modern computers, including important

realistic bubble-bubble interactions, coalescence of bubbles and bubble-bubble trailing

effect. We identified the passage time of successive bubbles through a fixed obser-

vation point as a measurement variable to describe the spatio-temporal behavior of

bubbles. Also, we investigated the bifurcations of global bubble dynamics in response

to changes in a distinguished bifurcation parameter, the bubble injection frequency.

Our research reveals that the global dynamics exhibits complicated behavior that un-

dergoes a series of bifurcations, as the injection frequency increases, including fixed

points, highly periodic orbits, chaotic attractors, and intermittent behavior. Aided

by time series analysis, we were able to approximate nonlinear models through phase-

space embedding and local linear fitting methods that reconstruct significantly well

the global dynamics except in regions where the system shows intermittency. Our ap-

proach to find computational estimates of maximum Lyapunov exponents succeeded

at most frequency points and showed consistent results with the associated bifurcation

diagrams. More importantly, the exponents confirm the presence of low-dimensional

deterministic chaos in the evolution of the bubbles.
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The DIBS model addresses prevalent bubble-bubble interactions of coalescence

and bubble-bubble trailing effects. The DIBS model is sufficient for modeling bubbles

in a fluidized bed with fine particles. When dealing with large particles, it might be

more realistic to include bubble splitting. This will be an interesting area for future

research.

We presented a method to digitize bubble dynamics and employed proper orthog-

onal decomposition to have spatial and temporal decompositions for collected data

from bubble simulations with multiple injectors. The resulting temporal evolution

data reveals the transitions of bubble dynamics in a fluidized bed with a swarm of

bubbles. It was found that a significant number of POD modes, more than 200 modes,

are needed to be able to capture 80% of total energy in a fluidized bed. Neverthe-

less, the POD analysis was successfully applied to analyze a spouting bed, in which

a centralized nozzle is used to produce circulating particles. With images taken from

actual experiments, the POD technique shows that 20 modes are sufficient to capture

80% of the total energy of the system.

We also presented a revised model for the computational simulation of emulsion

phase, which includes two-way coupling with the DIBS bubble model. In this revised

model, our bifurcation analysis showed similar behaviors of global dynamics in most

regions, but also some subtle differences in the embedding dimensions were obtained

via time series analysis. With the revised model and an appropriate mass-transfer

model, we were able to simulate some key features such as ozone concentration in a

bubbling fluidized bed. The results demonstrate good agreement, especially for large

gas velocities. The simulations, however, are currently based on a simplified one-

dimensional numerical approach for the emulsion phase, which is suitable for the case

of a single bubble injector. In reality, the emulsion phase often has circulated motion

that can not be described by a one-dimensional approach. We expect the results of
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this thesis can be improved when a complete three-dimensional solution of emulsion

phase is incorporated into the DIBS simulation with multiple injectors. This task is,

however, part of future work.
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