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Abstract of the Dissertation

PDE-Based Image and Structure Enhancement

for Electron Tomography of Mitochondria

by

Carlos Alberto Bazán

San Diego State University and Claremont Graduate University

Mitochondrial function plays an important role in the regulation of apoptosis. Addi-

tionally, defects in this function are believed to be related to many common diseases

of aging. In the presence of one of these diseases, mitochondrial function undergoes

measurable disturbance accompanied by drastic morphological alterations, suggesting

that a correlation exists between mitochondrial structure and functionality. However,

the interpretation and measurement of the architectural organization of mitochondria

depend heavily upon the availability of good software tools for filtering, segmenting,

extracting, measuring, and classifying the features of interest. In this work, we develop

mathematically sound and computationally robust partial differential equation-based

algorithms for the reduction of noise, and the enhancement of structural information

in images of mitochondria obtained via electron microscope tomography.

We design a multi-stage approach for extracting the mitochondrial structures

from electron tomograms. For the noise reduction phase of the pipeline, we devise

a structure enhancing anisotropic nonlinear diffusion model. It is based on an im-

proved image smoothing and edge detection technique that employs a combination of

nonlinear diffusion and bilateral filter. The eigenvectors of the bilaterally smoothed

structure tensor form the basis for the diffusion tensor, where the eigenvalues are pre-

scribed so that there is a smooth transition, rather than a hard threshold switching, of

the diffusion characteristics among image areas of differing structural properties. The



method is equipped with a new and simple diffusion stopping criterion, derived from

the second derivative of the correlation between the noisy image and filtered image.

After the noise reduction phase, we synthetically enhance the contrast of the image

by applying the confidence connected segmentation algorithm. Following that, struc-

tures are extracted using a level set formulation which includes a term that drives the

level set function toward a signed distance function. The extracted contours are ren-

dered as a three-dimensional image model. The results are very encouraging and this

computational approach is potentially much faster, and is more robust and unbiased

than hand-tracing of structures.

We develop an adaptive total variation-based model with morphologic convection

and anisotropic diffusion, and devise a user-independent method for choosing all

the parameters in the model. We estimate the unknown noise level via a simple

approximation that uses convolution with a Gaussian kernel. We implement a pixel-

wise parameter in the forcing-term that allows more diffusion in homogeneous areas,

and it restricts the diffusion in areas with higher probability of belonging to edges.

This parameter also enables more diffusion in the early stages of the scale-marching

process and discourages diffusion as iterations evolve. For the anisotropic diffusion

process, we implement a diffusion tensor that adapts to the underlying structure of

the image by applying a range of diffusion processes in each direction. The proposed

model applies diffusion methods consistent with either the total variation-norm or the

Euclidean-norm, or an interpolation between these two norms. We also implement an

adaptive time-step that helps with the stability and the speed of the total variation-

based restoration process. The adaptive time-step is smaller in regions with high

gradients and is larger in regions with low gradients. The results obtained by applying

this model to noisy images are comparatively superior in both speed and quality of

the restoration.



We propose a homomorphic total variation-based algorithm for the reduction of

the multiplicative noise present in low-dose electron microscope imagery. In the imple-

mentation of this model we employ some of the aforementioned adaptive parameters

that we devise for the adaptive total variation-based model. We compare the perfor-

mance of the proposed model to that of a total variation-based algorithm that was

originally designed for the removal of multiplicative noise. The resulting images after

applying both techniques are very similar in quality. Ours is the first implementation

of this method within the context of electron microscope tomography.
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Model, 0.9593. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.6 (left to right) Noise-free image of the Clown along with the noisy image
of the Clown which has been perturbed by Gaussian white noise with zero
mean and variance 0.01. The correlation coefficient between the noise-free
image and the noisy image, corr (f, u0), is 0.9301. . . . . . . . . . . . . . 40

3.7 Correlation coefficient between the noise-free image of the Clown and the
filtered image of the Clown at each iteration, along with the noise-free image
of the Clown. The maximum value of the correlation coefficient for each
model is as follows: Perona-Malik, 0.9763; Catté-Lions-Morel-Coll, 0.9762;
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Chapter 1

Introduction

1.1 Motivation

Scientists have been captivated by mitochondria1 ever since they were first described

by Kölliker (1856) as filamentous (mito) and grain (chondrium)-like structures in

muscle cells [83]. Mitochondria are cellular organelles conditio sine qua non complex

animals could not evolve in aerobic conditions. They carry out most cellular oxi-

dation and produce the majority of the adenosine triphosphate (ATP), which is the

universal energy currency of all known living organisms [399]. Since the early 1990’s

the study of mitochondria has undergone a revival, fueled by landmark discoveries

and considerable advances in our understanding of phenomena such as mitochondrial

import, movement, fission, fusion, inheritance, and interactions with the nucleus and

other organelles [301].

To date, it is firmly established that mitochondrial function plays an important

role in the regulation of apoptosis or programmed cell death [149, 195, 196, 197, 215,

270, 362]. For instance, following a variety of cell death signals, mitochondria exhibit

early alterations in function and morphological changes, such as the opening of the

permeability transition pore or mitochondrial megachannel [38, 52, 126, 180, 186, 226,

1Benda (1898) coined the term ‘mitochondria’ to define these cellular organelles.
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297, 399, 400, 409]. There is also strong evidence that defects in function may be

related to many of the most common diseases of aging, such as Alzheimer dementia,

Parkinson’s disease, type II diabetes mellitus, stroke, atherosclerotic heart disease,

and cancer2. This assertion is founded on the observation that mitochondrial function

undergoes measurable disturbance accompanied by drastic morphological alterations

in the presence of these multisystem diseases [12, 82, 91, 127, 257, 267, 290, 345].

Concurrent with the aforementioned conceptual advances, there has been a sig-

nificant increase in the types of tools available to study the correlation between mi-

tochondrial structure and function. Along with the now classic methods for isolating

mitochondria and assaying their biochemical properties, there are new and power-

ful methods for visualizing, monitoring, and perturbing mitochondrial function while

assessing their genetic consequences [227, 301]. Electron (microscope) tomography

(ET) has allowed important progress in the understanding of mitochondrial struc-

ture. This imaging technique currently provides the highest three-dimensional (3D)

resolution of the internal arrangement of mitochondria in thick sections [165, 289, 293].

Nevertheless, the interpretation and measurement of the architectural organization

of mitochondria depend heavily on the availability of good software tools for fil-

tering, segmenting, extracting, measuring, and classifying the features of interest

[128, 224, 292, 315, 328].

It has been argued in the structural biology community [127, 205] that the image

processing methodologies in the 3D ET field are not yet sufficiently developed, so as to

correctly extract features and understand spatial relationships in the mitochondrial

structure. There is strong need for a set of image processing methodologies that

2It has been estimated that mitochondrial disorders affect at least 1 in 5000 of the population
[327]. Skeletal and cardiac muscles and the central nervous system are most commonly affected by
mitochondria disorders [187, 291, 319]. Please refer to Appendix A for a more comprehensive list of
mitochondria disorders and their clinical syndromes.
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will facilitate efficient analysis of the data obtained via ET [240, 401]. Therefore,

the main motivation for this work is the development of mathematically sound and

computationally robust algorithms for the reduction of noise and the enhancement of

structural information in mitochondrial images. We carry out an inter-disciplinary

approach, based on a combination of established expertise in the fields of image

processing, mathematics, computational science, and structural biology. Our research

efforts initially focus on the understanding of the sources and mechanisms which

introduce noise (image degradation) in the ET processes. Correct modeling of the

degradation helps us design effective algorithms for the removal of the noise without

negatively impacting fine-detail structural information, and allows for more accurate

a posteriori feature recognition, boundary segmentation, and visualization.

1.2 Goal of the Thesis

The objective of this research from the standpoint of its contribution to the state of

the art is to develop, implement, and integrate modern image processing techniques

in order to obtain more accurate structural information of mitochondria from data

collected using 3D ET. The larger goal is to help boost the understanding of the intri-

cate mitochondrial architecture and its relation to functionality. In general, this work

is relevant to the structural biology community and its contribution to public health

through the understanding of biological systems. In particular, our work will help the

San Diego State University Mitochondria Research Group led by Prof. Terrence Frey.

This group has been investigating the structure and function of mitochondria among

other biological assemblies for many years. They apply techniques of high resolution

electron microscopy (EM) and digital image processing to study the structures of

biological macromolecules, macromolecular assemblies, and whole organelles. Their
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study of mitochondria has led, along with the work of several other research groups,

to a new paradigm of mitochondria structure.

As mentioned above, the interpretation and measurement of the structure of

mitochondria depend crucially on the employment of algorithms for segmenting and

classifying the features of interest, tools for making 3D measurements, and software

for interactively visualizing components of the structure [290]. There have been many

technical improvements in computational tools (both hardware and software) aimed at

furthering the capability of extracting quantitative information from 3D ET. Several

software applications and computational techniques have been specifically developed

for ET. These packages offer comprehensive sets of tools that allow a wide range

of structural biology analyses. The most popular general packages are IMOD [192,

230], SPIDER [30, 124, 398], Protomo [347, 387, 388, 389], SerialEM [231], EM3D

[159], XMIPP [333], TOM [266], EMAN/EMAN2 [218, 346], and UCSF tomography

[403, 404]. There are also many tools available that permit specialized tasks such

as data acquisition [231, 266, 344, 403, 404, 407], signal filtering [47, 111, 117, 223,

249, 273, 334, 363, 388], image segmentation [212, 310, 366], and data visualization

[21, 143, 395, 396]. Nevertheless, two of the most critical aspects within the ET

processes, namely the 3D filtering and two-dimensional (2D) and 3D segmentation

and feature extraction processes, are still the subject of active research. The former

constitutes the main topic of this thesis.

1.3 Thesis Contributions

In chapter 2 we summarize our findings from an extensive literature review on image

degradation in the ET processes. Good understanding of the sources and mechanisms

that incorporate noise and artifacts in cryo-electron tomography from thick-section
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specimens allows for the application of appropriate image processing techniques. As

a result of this research, we propose to model the noise in ET by a combination of

additive and multiplicative noise. For high counts (as in high-dose ET), the image

is predominantly perturbed by additive noise. In low-dose ET, it is more accurate

to assume that the image is degraded by multiplicative noise. The simplicity of this

noise model for ET makes it very attractive for employing basic techniques, adapted

from classic and well established partial differential equation (PDE) -based image

processing methodologies.

The contributions in chapter 3 can be divided into two parts. In the first part

of the chapter, we propose a new image smoothing and edge detection technique

that employs a combination of nonlinear diffusion and bilateral filter. The model is

based upon two very well established methodologies in the image processing com-

munity, which makes the model easy to understand and implement. Our numerical

experiments show that the proposed model is capable of achieving more accurate

restorations from noisy images, as compared to two other popular nonlinear diffusion

models in the literature. We also propose a new and simple diffusion stopping crite-

rion, derived from the second derivative of the correlation between the noisy image

and the filtered image. This indirect measure allows stopping the diffusion process

very close to the point of maximum similarity between the noise-free image and the

restored image, in the absence of the former. The stopping criterion is sufficiently

general to be applied with most nonlinear diffusion methods normally used for image

noise removal.

In the second part of the chapter we present a multi-stage approach for extracting

the mitochondria structures from ET. (i) In the initial restoration, or noise reduc-

tion phase, we propose a structure enhancing anisotropic nonlinear diffusion strategy.

The local structure tensor is formed from the gradient information of a bilaterally
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smoothed version of the current image. In order to close gaps in structures caused

by imaging limitations, the local structure tensor is further smoothed with a bilateral

filter, forming a smoothed version of the structure tensor. The eigenvectors of the

smoothed structure tensor form the basis for the diffusion tensor, where the eigenval-

ues are prescribed so that there is a smooth transition, rather than a hard threshold

switching of the diffusion characteristics between image areas of differing structure

properties. (ii) After the noise reduction phase, we synthetically enhance the contrast

of the image by applying the confidence connected segmentation algorithm. (iii) Fol-

lowing that, structures are extracted using a level set formulation which includes a

term that drives the level set function toward a signed distance function. This both

simplifies the initialization of the algorithm and removes the need for re-initialization.

(iv) The extracted contours are rendered as a 3D image model. The results are very

encouraging and this computational approach is potentially much faster, and is more

robust and unbiased than hand-tracing of structures.

The contributions in chapter 4 can also be divided into two parts. In the first

part we develop an adaptive total variation-based model with morphologic convec-

tion and anisotropic diffusion, and devise a user-independent method for choosing all

the parameters in the model. We start by estimating the unknown noise level via a

simple approximation that uses convolution with a Gaussian kernel. This parameter

is updated at each iteration and as the noise is being removed, it reduces the diffusion

and helps reach convergence. We implement a pixel-wise parameter in the forcing-

term that allows more diffusion in homogeneous areas and restricts the diffusion in

areas with higher probability of belonging to edges. This parameter also allows more

diffusion in the early stages of the scale-marching process and less diffusion as it-

erations evolve. These are desirable attributes in image noise removal applications.

For the anisotropic diffusion process, we implement a diffusion tensor that not only

6



steers the diffusion in such a way that the eigenvectors prescribe the diffusion di-

rections and the corresponding eigenvalues determine the amount of diffusion along

these directions, but also adapts to the underlying structure of the image and applies

a range of diffusion processes in each direction. The proposed model applies diffusion

methods consistent with either the total variation-norm or the Euclidean-norm, or an

interpolation between the two norms. Finally, we implement an adaptive time-step

that helps with the stability and the speed of the total variation-based restoration

process. The size of the time-step varies across the image at each iteration. The

adaptive time-step is smaller in regions with high gradients and is larger in regions

with low gradients. Both of these are desirable features for preserving the edges and

for smoothing isotropic regions, respectively.

In the second part of this chapter we design a homomorphic total variation-based

algorithm for the reduction of the multiplicative noise present in low-dose EM im-

agery. In a homomorphic system, the natural logarithm is used to transform the

multiplicative nature of the degradation into an additive one and then, the resulting

degraded image is processed by using a filter to reduce the additive noise. An ex-

ponential function is then applied to the output of the filter. In the implementation

of this model we employ some of the adaptive parameters we devise in the first part

of the chapter. For the purpose of performance comparison, we implement a total

variation-based model that was originally designed for the removal of multiplicative

noise. Ours is the first implementation of this method within the context of EM

tomography.
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1.4 Overview of the Chapters

Chapter 2 provides an overview of the main procedures involved in the EM of large

biological material volumes. This overview helps identify the steps that are more

prompt to noise and artifacts. A good understanding of the image degradation intro-

duced during the ET processes allows for the design of appropriate image processing

methodologies for EM imagery. Chapter 3 is about anisotropic nonlinear diffusion

and the application of these models for the denoising of images and the enhancement

of image structures. In this chapter we present a review of the Perona-Malik-type

models that where adapted for the processing of electron tomograms, and propose

a multi-stage approach for the extraction of mitochondrial structures from electron

tomogram for visualization and analysis. Chapter 4 deals with total variation-based

methods and the employment of these models for the removal of noise in images

while preserving the structures (edges). We offer a survey of the application of these

methods predominantly during the 3D volume reconstruction, and introduce total

variation-based methods as a viable approach for the removal of noise from electron

tomograms. Chapter 5 presents the algorithms that were used to implement the ex-

periments in this research. The main emphasis is put in the design of simple algorithm

that can run in parallel using the new MATLAB R© Parallel Computing ToolboxTM.
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Chapter 2

Electron (Microscope) Tomography

2.1 Introduction

The basic concepts employed in ET have been known since the early part of the

twentieth century. They are based on a principle first discovered by Radon [305] in

1917, i.e., a 3D reconstruction of an object can be retrieved from its projections. In

1968, De Rosier and Klug [81] applied this principle to formulate an algorithm for

the reconstruction of a 3D object from a set of electron microscope images. Coinci-

dentally, Hart [160] used an electronic picture-scanning device and a digital computer

to superimpose and form a montage of electron micrographs1 taken from a specimen

along several different directions. These events opened the doors to the possibility of

using ET to bridge the gap between the biological structural studies at the molecular

and cellular levels2 [220, 243, 343]. The complete procedure to reconstruct, model,

and interpret large biological material volumes by ET can be divided into four main

steps: (i) specimen preparation, (ii) electron microscopy, (iii) volume computation,

and (iv) image analysis and interpretation [171]. All of these steps have their own

practical challenges and are potential sources of noise and artifacts.

1Electron micrographs (tilt series) are 2D projections of the specimen at different tilt angles.
2Among the interesting objects in this size range are cellular protein machines, giant protein and

nucleic acid assemblies, large subcellular organelles (mitochondria), and small bacteria [401].
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2.2 Specimen Preparation

Most of the recent resurgence of interest in ET is undoubtly due to improvements in

specimen preparation. All of the earlier techniques were notorious for their artifacts

[29, 122, 125, 220, 242, 243]. Today, different techniques are employed based on

several variables such as specimen type, the kind of structural information to be

retrieved, and characteristics of the equipment being used [6]. Some of these specimen

preparation techniques are (i) staining, (ii) chemical fixation and plastic embedding,

(iii) rapid freezing, (iv) rapid freezing with freeze-substitution and plastic embedding,

and (v) cryopreparation and cryosectioning.

(i) Staining with heavy metal salts is often used as a means of increasing the

contrast in the images. This contrast is achieved in two ways: in positive staining,

the heavy metal salt forms a complex with the organic material turning it darker. In

negative staining, the heavy metal salt replaces the water by penetrating the cavities

around the molecules, turning darker the surroundings of the organic material. Often

times the specimen presents both positive and negative staining, making interpreta-

tion of complex structures very difficult. Furthermore, it has been argued [220] that

what is seen on the micrographs is the stain and not the biological material. Never-

theless, staining is very useful for the earlier stages of research to get a first glimpse

of the structure.

(ii) Chemical fixation and plastic embedding preparation involves various steps:

chemical fixation, dehydration in organic solvents, embedding in resin or plastic,

sectioning into slices, and staining with heavy metal salts. The chemical fixation

step can cause structural rearrangements within the specimen and, along with the

dehydration step, it can promote leakage of some cytoplasmic components and the

formation of artifacts [220, 259].
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(iii) Rapid freezing or ‘cryofixation’ involves freezing the specimen very rapidly

to reach a temperature below −140◦C and avoiding the formation of crystals. The

objective in cryofixation is to immobilize all constituents of the specimen before any

significant structural rearrangement occurs, and whereby the specimen will be em-

bedded in vitreous (amorphous) ice in near physiological state3 [8, 94, 220]. For

specimens of up to a few hundred µm high pressure freezing (HPF) is required4, by

which the sample is pressurized and frozen by jets of liquid nitrogen [252]. This

technique is currently the best method for structural preservation of most cells and

tissues in thick sections [95, 234, 241]. However, it has the main disadvantage5

that contrast between ice and biological macromolecules is very low, making it nec-

essary to employ enough electrons in order to reach a statistically reliable image

[46, 152, 173, 190, 236, 300, 311, 318, 335]. This goes in detriment of the specimen’s

integrity since it is extremely sensitive to the electron beam6 [355].

(iv) Rapid freezing with freeze-substitution (RF/FS) and plastic embedding is an

improvement over chemical fixation and plastic embedding [184, 235, 339]. The steps

involved in this preparation are: rapid freezing or HPF, freeze-substitution of water

by an organic solvent7 containing chemical fixatives at temperature around −90◦C,

embedding in resin or plastic at temperature below −40◦C, sectioning into slices,

and staining with heavy metal salts. Despite the improvements, this technique still

3If the specimen is thawed after using this method, a large portion of its cells will continue to
grow and divide [205, 239].

4This follows from the fact that the volume of water increases during crystallization.
5It has been also argued [96] that vitreous sections suffer from deformation during the cutting

process, but that this effect takes place without loss of information provided that the information is
homogeneous.

6Exposure of the specimen to the electrons induces ionization, breaking of chemical bonds, and
formation of free radicals (radiolysis) [220]. Thus, the accumulated electron dose over all projection
views should not exceed the limit of 2000 e−

/
nm2 [119, 122]. For details on the ‘dose fractionation

theorem’ the reader should refer to the early work by Hegerl and Hoppe [164], and consult [99, 122,
141, 142, 190, 219, 265, 300, 335] and the references therein for further information on the physics
behind specimen damage.

7This is a slow process that takes from two to three days [171].
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produces aggregation artifacts [95] and limited resolution [220]. This limitation is

due to stain rearrangement, formation of stain aggregates during electron irradiation,

and difficulty to differentiate stain from biological material [239].

(v) Cryopreparation and cryosectioning (sectioning at low temperature) comprises

plunge freezing the specimen (prior to sectioning) with no additional preparation, to

investigate the sample in the frozen-hydrated state [93]. Even though this technique

allows the study of biological material near physiological state, it is only suitable for

studying relatively thin specimens, up to 500 nm. Also, since the sample is kept on

the grid for a few second before freezing, the surface tension of water may induce

flattening in the direction perpendicular to the grid [220]. In addition, cryosectioning

is a source of several artifacts such as knife marks, crevasses, and compression [7].

2.3 Electron Microscopy

2.3.1 Instrumentation

Modern ET setups (see Fig. 2.1) consist of a transmission electron microscope (TEM)

equipped with: (i) a field-emission gun (FEG) and a computer-controlled stage, (ii) an

energy filter, and (iii) a charge-couple device (CCD) camera8 [78, 104, 200, 194, 220,

336].

(i) FEG microscopes have the main advantage of producing high spatial and tem-

poral coherence electron beam [242]. They achieve the preservation of high-resolution

information in low contrast objects, like frozen-hydrated biological samples, thanks

to the minimal attenuation of the contrast-transfer function (CTF). Thick samples

require imaging at intermediate (200-600 keV) and high (≥ 800 keV) voltages for the

electron beam to penetrate them.

8This is usually a slow scan CCD camera (SSC). There are also available the high-end elec-
tron multiplying charge-coupled device (EMCCD) cameras and the intensified charge-coupled device
(ICCD) cameras.
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Figure 2.1: Schematic representation of a TEM with its basic parts: high
voltage source, electron gun, condenser lenses, specimen holder, objective
lenses, projector lenses, and imaging device. Adapted from an original im-
age courtesy of Amanda Charr Englund (FEI Company). Reproduced with
permission.

(ii) Energy filters are necessary when imaging thick specimens. Inelastic scatter-

ing events are inevitable when electrons interact with these samples, leading to energy

exchange between them. This is usually experienced in the form of energy loss from

the primary beam, where energy is transferred to the sample through the excitation of

modes specific to the specimen [49]. The most noticeable effect of inelastic scattering

is strong blurring [220]. Energy filters allow the reduction of chromatic aberration

(polyenergetic imaging) in TEM, and the imaging of thick section at relatively higher

signal-to-noise (SNR) ratio.
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(iii) Current CCD cameras for ET record an electron image in three stages [108]:

1) Electrons are converted into photons in an electron scintillator, 2) Photons are

transported to the CCD array via lens coupling [104] or fiber optic coupling [78,

200, 194, 107], and 3) Photons are converted into well-electrons and these are read

out in the CCD. The disadvantage of this detection process is that backscattering of

electrons in the scintillator degrades the performance of the CCD camera, specially

for higher accelerating voltages. This stage is currently unavoidable since the CCD

is severely damage if exposed to the electrons directly. A better recording device for

EM would be the one that detects electrons directly. Unfortunately, this technology

has not been widely adopted due to some practical issues [103, 105, 108].

2.3.2 Data Acquisition and Image Formation

Data acquisition involves the recording of a series of micrographs. This was made

possible by the development of automated procedures that acquire a tilt series under

low-dose conditions [85, 86, 87, 150, 351]. The automated acquisition of a tilt series

comprises three steps, (i) tracking, (ii) autofocusing, and (iii) exposure.

(i) The tracking procedure determines possible lateral displacement of the speci-

men as compared to the previous tilt angle.

(ii) The autofocusing step determines possible defocus change by comparing mi-

crographs at different beam tilts [191, 406].

(iii) Once the necessary adjustments have been determined, the final image is

recorded under normal-dose conditions. The previous two steps are executed under

very low-dose conditions, at positions that are shifted along the tilt axis in reference

to the exposure location, to minimize the electron dose received by the region of

interest (ROI) [220].

The data acquired in the aforementioned process show the projections of the elec-
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trostatic density in the sample, i.e., each pixel represents the total energy along a

straight line9 perpendicular to the imaging plane [39] (see Fig. 2.2). Image formation

(contrast-forming mechanism) in a TEM depends on the specimen preparation. For

stained specimens, image formation mainly arises from amplitude contrast. In this

case the projections of the electrostatic density of the sample are proportional to the

logarithm of the micrograph pixel values [220]. For nonstained specimens, image for-

mation is mainly due to phase contrast which results from the quantum superposition

of the crest of the single wave as it passes through the specimen [106]. In this case

the micrograph is a projection of the specimen’s electrostatic density, convolved with

the inverse Fourier transform of the CTF, in which the CTF describes the imaging

conditions and the TEM properties10.

Figure 2.2: 3D reconstruction of an object from its projections by using
the weighted-backprojection method. Original image courtesy of José-Jesús
Fernández (University of Almeria). Reproduced with permission.

9In reality electrons travel along a curved helical orbit as they pass through the microscope
column [48, 202].

10The optical system has to be modeled since it is the optics that converts the phase contrast to
visible amplitude contrast.
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2.4 Volume Computation

The two basic steps involved in the 3D reconstruction of an specimen from its projec-

tions are: (i) alignment of the different micrographs to a common coordinate system,

and (ii) merging of the aligned micrographs into a tomogram.

(i) The most common alignment procedure employs fiducial markers11 (typically

colloidal gold), to keep track of small specimen movements within the image field

[89, 202, 232, 236, 309]. Ideally, the method will be able to determine the angle

of the tilt axis, lateral shifts, magnification changes, and image rotations, for it to

accomplish an accurate alignment. The alignment model is then computed using

least-square procedures.

(ii) The Fourier transform of a micrograph corresponds to a central slice in the 3D

Fourier space of the sample being imaged (see Fig. 2.3). This is the basic rationale

behind the recovering of 3D data from its projections. Most reconstruction algorithms

are performed in the real space as opposed to the Fourier space, due to the notorious

difficulties involved with the former approach. The most common 3D reconstruction

method employed in ET is the weighted (or filtered) backprojection (WBD/FBP) [76,

139, 304, 306, 356]. This is a very simple, linear transformation approach [264, 354],

in which the aligned micrographs are projected back to form a 3D reconstruction of

the specimen. In this method, the weighting is performed in the Fourier space and the

actual reconstruction is done in the real space [109]. Alternatives to the WBP/FBP

method are the algebraic reconstruction technique (ART) [148, 225] also known as

the Kaczmarz method, the simultaneous iterative reconstruction technique (SIRT)

[138] also known as Landweber iteration, and the series expansion reconstruction

11Other approaches such as utilizing naturally existing features in the micrographs [50, 51] and
cross-correlation functions between the various micrographs [123] are difficult to use in low-dose ET,
due to the poor contrast and high noise level in the micrographs.
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(SER) methods [209, 233]. ART and SIRT are iterative methods that are gaining

in popularity as computationally faster implementations are being developed [110].

SER employs blob basis functions that provide the series expansion method with

an implicit regularization mechanism which makes it well suited for noisy conditions

[110, 113].

z

x

10 º

20 º

60 º

C row ther
c riterion

Figure 2.3: Each projection of an object with thickness h corresponds to a
central slice of thickness 1/h in the Fourier space. Therefore, outside of the
missing wedge, the 3D information of the object can be retrieved homoge-
neously up to a frequency limited by the Crowther criterion. Adapted from
an original image by Anton Hillebrand (Max Planck Institute of Biochem-
istry). Reproduced with permission.

One of the principal limitations of all the 3D reconstruction algorithms in ET is

the limited tilt range (±70◦). This is due to the design of the specimen holder12 and

leaves an unsampled wedge-shaped region in Fourier space (‘missing-wedge’). When

reconstructed, the missing-wedge causes nonisotropic resolution where objects appear

elongated in the beam direction, and some structural elements are not resolved at all

[220]. Some of these issues can be attenuated by double-tilt acquisition. This consists

of two single-tilt series recording where the specimen is rotated by 90◦, and allows

sampling the structural components of the objects more isotropically. The procedure

still leaves a pyramid-shaped region in Fourier space that remains unsampled, and

12The specimen holder that allows us to change the positioning of the specimen relative to the
optical axis of the microscope is termed ‘goniometer’ [106].
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Figure 2.4: The upper illustrations represent the sectors in the Fourier do-
main that remain unsampled due to the limited tilt range, ±70◦. In the case
of the single-axis tilting (left), there is a ‘missing wedge,’ while in the case
of the double-axis tilting (right), there is a ‘missing pyramid.’ The resulting
missing information in real space is shown in the lower illustrations. Origi-
nal image courtesy of Vladan Lučić (Max Planck Institute of Biochemistry).
Reproduced with permission.

the SNR decreases to avoid damaging the samples with the longer exposure to the

electron beams (see Fig. 2.4). Even in the case of double-tilt imaging, limitations on

the range of the tilt angle still leads to severe ill-posedness for the inverse problem

[61, 264, 280, 287, 300].

2.5 Image Analysis and Interpretation

The analysis and interpretation of tomograms require that the 3D image be de-

composed into its structural components. This is usually accomplished via image

segmentation and feature extraction. A manual assignment of features is the typ-

ical approach since, currently, there is no better judgement than the one done by

the (trained) human eye [159, 167, 192, 212, 237]. Although, automated (or semi-

automated) segmentation and feature extraction has the advantage of being faster

and more objective [21, 120, 367]. The ability to perform efficient segmentation

and feature extraction, either manual or automated, and subsequent visualization
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and interpretation of the tomogram is hampered by the very low SNR. There have

been many attempts during the last few years to address this limitation [117]. The

simplest noise removal techniques use diverse linear filtering operations, such as low-

pass filtering either in the real or the Fourier space. More sophisticated approaches

employ techniques such as wavelet transformation [340], bilateral filtering [178], or

anisotropic nonlinear diffusion [111, 119]. Anisotropic nonlinear diffusion is particu-

larly useful when the enhancement of edges is desired. This is the topic of chapter

3. When the artificial enhancement of edges is to be avoided, the methods of choice

are total variation-based noise removal models. We introduce this technique to image

processing for ET in chapter 4.

2.6 Characterization of the Noise

2.6.1 Nature and Statistics of the Noise

In the electron detection process using a CCD camera in ET, there are at least two

types of noise13: Poisson noise (predominantly multiplicative noise) and Gaussian

noise (predominantly additive noise) [106, 410]. The shot noise in the original electron

image14, the shot noise of the dark current15, and the CCD bias (gain16 image) are

assumed to follow Poisson’s statistics [71, 175, 238, 394]. The CCD read out noise is

assumed to be Gaussian distributed17 [394, 410]. Both types of noise are considered

13For noise models that can be applied to more conventional CCD cameras the reader is referred
to [162, 391].

14The shot noise that occurs in the scintillator once convolved with the PSF of the detector is
called the ‘Fano noise.’

15Dark currents are (spontaneous) thermally generated electrons in the CCD. This can be sub-
tracted but the noise associated with dark currents remains [177].

16The gain of the camera is a ratio that relates the initial number of electrons in a pixel to the
final number of counts reported by the camera software. The noise in the gain image introduces a
systematic bias that can be treated as a systematic error and can be ignored (as a source of noise)
for the purpose of image restoration [410].

17Alternatively, some authors prefer to approximate the read out Gaussian noise with variance σ2

with a Poisson noise of mean σ2, and treat it as an offset to the intensity [410].
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as white noise18 and the read out noise and the dark current noise are also considered

independent from the illumination [394]. In the most general sense we can consider

the recorded image as a combination of the original electron image and its interaction

with the detector. Therefore, the recorded image is highly dependant on the detector’s

characteristics. In practice, this relationship results in a blurry and noisy image. For

a linear detector, the recorded intensity u0, at pixel x = (x, y), is proportional to the

signal and plus the background [410] and can be cast as

u0 (x) = L (x) F (x) + B (x) + N (x, F ) , (2.1)

where N is the noise introduced by the detector19, L is the linear gain of the detector,

and B is the background noise20. For a homogeneous detector the signal F is a

convolution of the original electron image21 and the PSF of the detector.

To the best of our knowledge, all the models employed in ET assume only additive

stochasticity for the data, see e.g., [122, 405]. This is a reasonable assumption when

we are dealing with high counts. However, in cases when we have a low number of

counts, such as in data from low-dose ET, more accurate models for the stochasticity

of the data are required [106]. In low-dose ET, the Poisson stochasticity becomes

the dominant degrading factor, challenging the applicability of the classic models

that consider only additive noise [151, 152, 223, 236, 311, 405, 410]. The strong in-

fluence of the Poisson stochasticity in low-dose ET explains why some authors are

starting to consider the degradation present in the micrographs as ‘speckle noise.’ It

has been conjectured in [67] that the shot noise in ET presents “fluctuating gran-

18White noise is frequency independent in a wide interval of frequency [43].
19The noise performance of the detector is often characterized by the ‘detector quantum efficiency’

(DQE), which is the squared ratio of output SNR to input SNR [174].
20Background noise is a consequence of spurious events due to x-rays or cosmic rays to which the

CCD is also sensitive.
21The original electron image is the quantum mechanical probability of detecting an electron at

the position x.
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ular pattern very similar to that observed in speckle noise.” The authors in [106]

presented a survey of the recent approaches employed in combination with the recon-

struction obtained from WBP/FBP in order to “remove speckle and enhance image

features” [119, 163, 262, 361]. Images generated by coherent imaging systems are

always degraded by speckle noise [134, 322, 397]. Coherent imaging systems are very

common in many applications such as synthetic aperture radar (SAR), ultrasound,

and laser imaging. As mentioned in subsection 2.3.1, FEG microscopes produce high

spatial and temporal coherent electron beam [242]. However, there are two factors

that lead to only partial coherence. The inelastic scattering of electrons gives rise to

partial spatial coherence, while chromatic aberration of the objective lens produces

partial temporal coherence. For more details on this topic the reader can consult

[122, 161, 162, 250, 251, 288, 308, 335] and the references therein.

An a priori estimate of the data error introduced by the complex stochasticity

involved in the ET processes is far from obvious. In subsection 2.6.2 we adopt a noise

model that attempts to consider some of the elements from the nature of noise in ET

discussed here. There are, though, many elements that are left out in the interest of

tractability and that are problem specific. For example, in the study of mitochondria

we usually deal with thick-section specimens. That gives rise to an anomaly referred

to as ‘variable defocus’ in the specimen [122, 162, 388]. This simply refers to the fact

that parts of the specimen (especially at high tilt angles), are in different focus with

respect to the objective lens. Another issue that presents itself when dealing with 3D

reconstructions in general, and 3D reconstructions from thick sections in particular,

is the ‘full tomographic problem’ [106, 128, 172, 264, 285, 286]. In other words, the

problem of quantifying the noise in the final 3D reconstruction, given what we know

(or do not know) about the noise in the micrographs. In general, performing an

image degradation analysis considering the true stochasticity of the data is still an
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open question, mainly due to the severe ill-posedness of this problem.

2.6.2 Adopted Noise Model

In subsection 2.6.1 we discussed the nature of the noise in ET. The complex stochas-

ticity of the signal is such that it is difficult to produce a standard by which noise

can be measured [216, 238]. Nonetheless, we propose to model the noise in ET by a

combination of additive and multiplicative noise,

u0 (x) = m (x) f (x) + η (x) . (2.2)

Eq. (2.2) is a simplified version of Eq. (2.1) where N (x, F ) has been decomposed

into its multiplicative and additive components, and the different terms are bundled

together to form a simpler model. The down-side of adopting this over-simplified

noise model is that we no longer have a clear understanding of the distributions

involved in the model. What we do know is that the additive and multiplicative noise

components are functions of the electron dose. When high electron dose is used the

additive component of the noise becomes predominant, while for low-dose conditions

the multiplicative noise prevails.

This noise model can also take into account other practical aspects of the image

degradation in ET. For example, the PSF of the detector introduces some correlation

among the data recorded at different pixels even though the count events at the

scintillator and the pixels at the CCD are independent [106]. Also, when a number

of images are combined to yield a 3D reconstruction, there is some form of averaging

that causes the noise to be reduced [354]. Therefore, the original assumptions made

in subsection 2.6.1 are difficult to propagate through the 3D reconstruction. In spite

of these limitations, we can borrow some results from other imaging fields that can

help us make reasonable assumptions.
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For the case of low electron dose it is reasonable to assume that the signal is

mainly corrupted by speckle-like degradation. Speckle can be either partially or fully

developed depending on the scatter number density [1]. Fully developed speckle has

the characteristics of random multiplicative noise [134, 147, 322, 368, 397]. Most

researchers agree that the noise in a single image corrupted by speckle follows a

negative exponential distribution [146, 147, 166, 352, 368]. When speckle is reduced

by image integration, such as in multi-look averaging (SAR) (and perhaps image

WBP/FBP in EM), the resultant speckle is characterized as following either a Gamma

distribution [3, 98, 116, 146, 166, 352, 368] or a Log-normal distribution22 [4, 134, 322].

In the case of multi-look images, it has been stated [134] that using either the Gamma

distribution or the Log-normal distribution to model the speckle does not result in a

significant difference in the filter performance.

Most of the multiplicative noise reduction techniques employ some variation of

Oppenhein’s homomorphic systems [275]. Oppenhein introduced the idea of a canon-

ical form of a system comprising a point operation to convert the signal and noise

combination to an additive one. Then, he applied a linear system to suppress the

now additive noise, and finally an inverse point operation to return the processed

signal and noise to the original intensity domain23. In the present, a number of

methods (using this approach) exist to address the problem of speckle noise includ-

ing median filtering [77, 136], temporal averaging [35, 134], geometry-based filtering

[75], nonlinear multiscale filtering [408], adaptive speckle reduction [17, 115, 132, 198,

199, 204, 217, 263, 271], homomorphic Wiener filtering [10, 134, 135, 176], wavelet

[133, 134, 154, 166, 203, 272, 317], and curvelet [316, 317, 338, 353].

However, care must be taken when applying approaches based on additive noise

22As the number of images integrated tends to infinity, the speckle intensity tends to follow a
Gaussian distribution [13, 147].

23Cole [70] might have been the first to apply this methodology for image processing.
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models directly to a log-transformed signal. The logarithmic transformation is a

nonlinear operation that can completely change the statistics of the image [397].

This issue has been addressed by a few authors [168, 181, 397] and the probability

density function, mean value, and variance that characterize the log-transformed

speckle have been devised [397]. It has been also found that applying the logarithmic

transformation to the signal perturbed by fully developed speckle is very close to

Gaussian distribution24 [1, 98, 155]. This implies, that after an image integration, the

Log-normal distribution could be safely used to approximate the intensity distribution

of the speckle [322].

The noise degradation of a multiplicative nature can be interpreted as each sample

of the true signal being multiplied by a random noise element. A 3D tomogram can

be represented as

u0 (x) = m (x) f (x) ,

where in this case x = (x, y, z), u0 (x) is the observed degraded image, f (x) is the

true image, and m (x) is the multiplicative noise with unit-mean following a Gamma

(or Log-normal) probability distribution. Applying the natural logarithmic transform

(homomorphic system) to the observed corrupted image we can write

ln u0 (x) = ln f (x) + ln m (x)

= ln f (x) + m̄ (x) .
(2.3)

Adding and subtracting the mean of m̄, µm̄, from the right-hand side of Eq. (2.3) we

have

ln u0 (x) = ln f (x) + µm̄ + m̄ (x)− µm̄,

which can be written as

ū0 (x) = f̄ (x) + η̄ (x) . (2.4)

24It has been conjectured that the Gaussian distribution approximation can be also considered in
the case of partially developed speckle [1, 98].
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In Eq. (2.4), η̄ (x) is a random zero-mean noise process [350] (very close to Gaussian

distribution [1, 98, 155]) and f̄ (x) = ln f (x)+µm̄. The variance and mean of m̄ have

been derived in [397] for an integer number of looks, L:

µm̄ = −γEM − ln (L) +
L−1∑

k=1

1

k
, (2.5)

σ2
m̄ =

π2

6
−

L−1∑

k=1

1

k2
. (2.6)

In Eq. (2.5), γEM = 0.577215664901... is the Euler-Mascheroni constant. We will

make use of the assumptions considered in this subsection when presenting one of the

total variation-based noise removal methods in chapter 4.

2.7 Experimental Materials and Methods

The electron tomogram employed in our experiments corresponds to a HeLa cell25 and

was obtained from a 250 nm semi-thick section across a mitochondrion expressing cy-

tochrome c-GFP. In the interest of research not discussed here, apoptosis was induced

in the mitochondria with 100µM etoposide for 15 hours. The imaging occurred before

the release of cytochrome c or loss of membrane potential allowing the maintenance

of normal mitochondrion profiles; however, the treatment caused elongation of the

crista junctions. The use of a semi-thick section is advantageous because it allows

accurate depiction of the inner membrane topology of the mitochondrion.

The microscope used was the FEI Tecnai 12 transmission electron microscope with

magnification set at 11000×. The EM tomography single-tilt series 3D reconstruction

was obtained from the semi-thick sample by progressively tilting the specimen and

recording images using a Teitz 214 digital camera with an image pixel size of 1.27 nm.

25A HeLa cell is an immortal cell line used in medical research. The cell line was derived from
cervical cancer cells taken from Henrietta Lacks, who died from cancer on October 4, 1951 [348].
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The tilting was conducted in increments of 2 degrees over an angular range of ±60◦;

the angular range is limited by the geometry of the apparatus that holds the sample.

Once the tilt-series was collected on the digital camera, the IMOD Software Suite

[192] was used to process the images and obtain the 3D reconstruction of the electron

tomogram.

2.8 Concluding Remarks

The main procedures used to reconstruct, model, and interpret large biological ma-

terial volumes via ET are subject to noise and artifacts. Accurate modeling of every

image degradation introduced during the ET processes is a daunting task. From an

image processing standpoint, we are most interested in the interaction between the

electron image and the detector, which generates the recorded image. Even within

this narrower scope, the noise introduced by the complex stochasticity involved in

the process is far from obvious. We propose to model the noise in ET by a com-

bination of additive and multiplicative noise, u0 (x) = m (x) f (x) + η (x). For high

counts, the image is predominantly perturbed by additive noise. In low-dose ET, it

is more accurate to assume that the image is degraded by multiplicative noise. The

simplicity of this noise model for ET makes it very attractive for employing basic

techniques, adapted from classic and well established PDE-based image processing

methodologies.
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Chapter 3

Anisotropic Nonlinear Diffusion
Models

3.1 Introduction

Analysis of image features in early vision presents two almost mutually exclusive

requirements. On the one hand, it is desirable to smooth homogeneous regions of

the image, and on the other hand, we wish to preserve the location of the object

boundaries (edges) accurately. In an effort to achieve both goals, the classic multiscale

analysis theory due to Marr and Hildreth [229], later formalized by Witkin [392],

Koenderink [189] and Canny [60], uses a low-pass filtering obtained by convolving the

image with Gaussian kernels of increasing variance, then traces back the position of

the edges from finer scales. Koenderink [189] soon realized that the convolution of

the image with a Gaussian kernel at each scale is equivalent to the solution of the

heat equation with the image as initial state1. Thus, given the observed (noisy) image

u0 (x), where x = (x, y) denotes space coordinates, the scale-space analysis associated

1For a ‘hand-waving’ proof of this assertion please refer to Appendix B.
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with u0 consists in solving the system2

ut −∇2u = 0, (3.1)

for t > 0, on an infinite domain Ω, and initial condition u (x, 0) = u0 (x). This system

has a unique solution [373]

u (x, t) =





u0 (x) t = 0
(
G√

2t ∗ u0

)
(x) t > 0,

(3.2)

provided that (i) the function satisfies ‖u (x, t)‖ ≤ M exp
(
a |x|2), M > 0, (ii) it

depends continuously on the initial condition u0 with respect to ‖ · ‖L∞(R2), and (iii) it

meets the maximum-minimum principle inf
R2

u0 6 u (x, t) 6 sup
R2

u0 on R2 × [ 0,∞). In

Eq. (3.2), G√
2t is a Gaussian kernel of width

√
2t, and ‘∗’ indicates convolution. For

tracing back the position of the edges, the point x is an edge for the scale t, in places

where3 |∇u (x, t)| is large and ∇2u (x, t) changes sign.

The simplicity and effectiveness of the Gaussian smoothing makes it an attrac-

tive tool for image noise removal. However, it also presents at least a couple of

serious drawbacks: (i) Gaussian smoothing does not only smooth the noise but it also

smoothes everything else along with it, and (ii) Gaussian smoothing tends to dislocate

edges when we move from finer to coarser scale [392, 393]. Most of the shortcomings

of linear diffusion processes can be attenuated through nonlinear diffusion models.

2Unless stated otherwise, ∇· and ∇2· involve derivatives with respect to the spatial variables
(x, y). We are adopting the notation where ut ≡ ∂u/∂t, ux ≡ ∂u/∂x, uy ≡ ∂u/∂y, represent the
partial derivatives of u with respect to time (scale) and spatial variables (x, y), respectively.

3We are adopting the notation where |∇u| ≡
√

u2
x + u2

y represents the magnitude of the gradient

of u at point (x, y).
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3.2 Nonlinear Diffusion Models in Image Process-

ing

3.2.1 Inhomogeneous Nonlinear Diffusion

Nonlinear diffusion is a very powerful image processing technique used for the reduc-

tion of noise and enhancement of structural features. It was first introduced in the

context of image processing by Perona and Malik [294], as an attempt to overcome

the shortcomings of linear diffusion processes, namely the blurring of edges and other

localization problems. Their model accomplishes this by applying a process that re-

duces the diffusivity in areas of the image with higher likelihood of belonging to edges.

This likelihood is measured by a function of the (current4) local gradient |∇u|. Their

model can be written as

ut −∇ · (g (|∇u|2) · ∇u
)

= 0, (3.3)

for t > 0, on a closed domain Ω, with the observed image as initial condition, u (x, 0) =

u0 (x), and homogeneous Neumann boundary conditions5, 〈g · ∇u,n〉 = 0, on the

boundary ∂Ω. In this model the diffusivity has to be such that g
(|∇u|2) → 0 when

|∇u| → ∞, and g
(|∇u|2) → 1 when |∇u| → 0. One of the diffusivities Perona and

Malik proposed is (see Fig. 3.1)

g
(|∇u|2) =

1

1 + |∇u|2/λ2
, (3.4)

where λ > 0 is a threshold (contrast) parameter that separates forward (|∇u| 6 λ,

low contrast) and backward (|∇u| > λ, high contrast) diffusion areas [373]. Their

model accomplishes the long sought effect of blurring small fluctuations (possible

4Fritsch, Pizer and Coggins [130] and Fritsch [129] included a priori information about the image
in the form of an edge detector based on |∇u0|.

5We are adopting the notation where n denotes the outward normal to the domain’s boundary
∂Ω, and 〈g · ∇u,n〉 indicates the inner product

∫
∂Ω

(g · ∇u) · n ds.
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noise) while preserving (and enhancing) edges. The results obtained by Perona and

Malik were visually very impressive.
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Figure 3.1: (left) Behavior of the Perona-Malik diffusivity, Eq. (3.4), for the
parameter λ = 0.4. The diffusivity is such that 0 ≤ g

(
|∇u|2

)
≤ 1 and it goes

to zero very rapidly as |∇u | increases. In practice, the higher the gradient
(i.e., near edges), the lower the diffusion for all values of λ, and the higher
the parameter λ, the higher the diffusivity for the same gradient. (right)
The contrast parameter, λ, separates forward (|∇u| 6 λ, low contrast) and
backward (|∇u| > λ, high contrast) diffusion areas.

Notwithstanding the practical success of the Perona-Malik model, it presents

some serious theoretical problems: (i) None of the classic well-posedness frameworks

is applicable to the Perona-Malik model, i.e., we can not ensure well-posedness results

[268, 383]; (ii) Uniqueness and stability with respect to the initial image should not

be expected, i.e., solvability is a difficult problem, in general [62, 169, 170, 185,

295]; (iii) The regularizing effect of the numerical discretization plays too much of an

important role in the solution [36, 131]. The latter is perhaps the key element in the

success or failure of the model. Most practical applications work very well provided

that the numerical schemes stabilize the process through some implicit (or explicit)

regularization.
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This observation motivated an enormous amount of research towards the incor-

poration of the regularization directly into the PDE, to avoid excessive reliance on

the numerical schemes [62, 268]. A variety of spatial, spatio-temporal, and temporal

regularization procedures have been proposed over the years [11, 27, 62, 74, 211, 268,

369, 373, 379, 385]. We present here only the works that serve as background for

our proposed methods. The one model that has attracted much attention within the

image processing community is the mathematically sound formulation due to Catté,

Lions, Morel and Coll [62]. They proposed to replace the diffusivity g
(|∇u|2) of the

Perona-Malik model by a slight variation, g
(|∇uσ|2

)
, with uσ = Gσ ∗ u, where Gσ is

a smooth kernel (Gaussian). Their model can be written

ut −∇ · (g (|∇uσ|2
) · ∇u

)
= 0, (3.5)

for t > 0, on a closed domain Ω, with the observed image as initial condition, u (x, 0) =

u0 (x), and homogeneous Neumann boundary conditions, 〈g · ∇u,n〉 = 0, on the

boundary ∂Ω. We should note that this spatial regularization model belongs to a

class of well-posed problems6, and that its successful implementation is contingent on

the choosing of an appropriate value for the additional regularization parameter σ.

Whitaker and Pizer [385] and Li and Chen [211] suggested making the parameters

σ and λ time-dependent, and Benhamouda [36] performed a systematic study of the

influence of these parameters for the one-dimensional (1D) case.

As for the diffusivity g
(|∇uσ|2

)
, it has to be chosen as a (rapidly) decreasing

function of the edge detector |∇uσ|. Weickert [379] proposed to use (see Fig. 3.2)

g
(|∇uσ|2

)
=

{
1 |∇uσ| = 0

1− exp
(

−c
(|∇uσ |/λ)8

)
|∇uσ| > 0 ,

(3.6)

for which we can ensure that the flux increases for |∇uσ| ≤ λ and decreases for

6Existence, uniqueness, and regularity of a solution for σ > 0 were proven in [62].
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|∇uσ| > λ, by choosing c ≈ 3.31488. After some time this filter creates segmentation-

like results which are piecewise almost constant [378]. For t →∞, however, the image

becomes completely flat [375]. Well-posedness results for this filter can be found in

[62, 375], and a scale-space interpretation in terms of an extremum principle as well

as decreasing variance, decreasing energy, and increasing entropy is given in [375].
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Figure 3.2: (left) Behavior of the Weickert diffusivity, Eq. (3.6), for the
parameter λ = 0.4. The diffusivity is such that 0 ≤ g

(
|∇u|2

)
≤ 1 and it

goes to zero very rapidly when |∇u| > λ. (right) The contrast parameter,
λ, separates forward (|∇u| 6 λ, low contrast) and backward (|∇u| > λ, high
contrast) diffusion areas.

Another interesting variation to the Perona-Malik model has been proposed by

Nordström [269], who considered diffusion-reaction methods for the restoration of

degraded images. Such an approach leads to Euler-Lagrange equations of the form

ut −∇ · (g (|∇uσ|2
) · ∇u

)
= β (u− u0) , (3.7)

for t > 0, on a closed domain Ω, with the observed image as initial condition, u (x, 0) =

u0 (x), and homogeneous Neumann boundary conditions, 〈g · ∇u,n〉 = 0, on the

boundary ∂Ω. This is identical to the models we have been considering but with
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an additional bias term β (u− u0). In principle, the bias term should spare the user

from choosing a stopping time7, by the choosing of an additional free parameter β.

This type of diffusion-reaction models has been studied further and improved upon

in [73, 74, 137, 303, 320].

3.2.2 Inhomogeneous Nonlinear Diffusion and Bilateral Fil-
ter Model

In the Catté-Lions-Morel-Coll model, Eq. (3.5), the diffusivity term inside the diver-

gence, g
(|∇uσ|2

)
, is a function of the gradient of the solution of the heat equation at

scale σ, with u (x, 0) as the initial state. Consequently, it is equivalent to using an es-

timate of the gradient of u at point x, obtained by the classic scale-space theory [11].

In practice, after the Gaussian (domain) filtering is performed, the term g
(|∇uσ|2

)

allows for the detection of the positions of the main edges and prevents excessive

diffusion at these locations. By the same token, the small fluctuations (noise) will be

sufficiently smooth and not be mistaken for edges, and can be diffused away.

In previous work [33] we proposed using a refined estimate of the gradient of

u at point x, obtained by applying a bilateral filter (BF) in place of the Gaussian

kernel. Bilateral filtering is a technique for smoothing images while preserving edges.

The first application of this method is attributed to Aurich and Weule [15], and it

was subsequently rediscovered by Smith and Brady [329] and Tomasi and Manduchi

[349]. Since its introduction, the bilateral filter has been successfully employed in

various contexts [9, 18, 37, 97, 100, 102, 214, 274, 298, 307, 390]. The bilateral filter’s

characteristics and behavior have been the subjects of extensive theoretical studies

that have made bilateral filtering a fairly well understood process [25, 26, 58, 97, 101,

256, 283, 330, 357, 358]. The basic idea underlying bilateral filtering is to combine

7In practice, the bias term forces the steady-state solution to stay close to the observed image.
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X =

input

spatial weight range weight

bilateral filter

output

Figure 3.3: In the bilateral filtering each pixel is replaced by a weighted
average of its neighboring pixels. Each neighboring pixel is weighted by a
spatial component that penalizes distant pixels, and a range component that
penalizes pixels with disparate intensities. Both components are multiplied
to obtain a kernel that ensures the contribution of only nearby analogous
pixels. (A similar image originally appeared in [97].)

domain and range filtering, thereby enforcing both geometric and photometric locality

(see Fig. 3.3). The model can be expressed as

Gbf ∗ u (x) =
1

W (x)

∫

Ω

Gσd
(ξ,x) Gσr (u (ξ) , u (x)) u (ξ) dξ, (3.8)

with the normalization constant

W (x) =

∫

Ω

Gσd
(ξ,x) Gσr (u (ξ) , u (x)) dξ. (3.9)

Typically, Gσd
will be a spatial Gaussian that decreases the influence of distant pixels,

while Gσr will be a range Gaussian that decreases the influence of pixels u (ξ), with

intensity values that are very different from those of u (x), e.g.,

Gσd
= exp

(
−|ξ − x|2

2σ2
d

)
, Gσr = exp

(
−|u (ξ)− u (x)|2

2σ2
r

)
. (3.10)
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Parameters σd and σr dictate the amount of filtering applied in the domain and

the range of the image, respectively. This filtering technique, as presented thus far,

has the possible objection that it might consist of an expensive proposition. For-

tunately, several authors have addressed this limitation and devised very efficient

implementations of the method [68, 283, 299, 384]. In our application we use the fast

approximation due to Paris and Durand [283] which employs downsampling in the

domain and range, which achieves important acceleration of the bilateral filtering.

The proposed model is therefore

ut −∇ · (g (|∇ubf |2
) · ∇u

)
= 0, on Ω× [ 0,∞) ,

u (x, 0) = u0 (x) , on Ω,

〈g · ∇u,n〉 = 0, on ∂Ω× (0,∞) ,

(3.11)

where ubf = Gbf ∗u is the domain- and range-filtered image, and g
(|∇ubf |2

)
> 0 is a

smooth nonincreasing function with g
(|∇ubf |2

) → 1 as |∇ubf | → 0, and g
(|∇ubf |2

)

tending to zero at infinity. We should recall here that the main purpose of the function

g is to provide ‘intelligent’ smoothing. It should not only inhibit diffusion at edges and

allow it far from them, but it should also precisely locate the position of the main

edges. By design, this is exactly what bilateral filtering accomplishes. It provides

image smoothing with strict preservation of the edges without artificially enhancing

them.

The practical success of the proposed model has its roots in the connection that

exists between bilateral filtering and the Perona-Malik-based methods. Buades, Coll

and Morel [59] have established the existing link between bilateral filtering and well-

known PDE models such as the heat equation and the Perona-Malik equation. They

have proven that for small neighborhoods, bilateral filtering using a box function as

spatial weight, asymptotically behaves as the Perona-Malik model. In a discrete set-

ting, Durand and Dorsey [97] have shown that the bilateral filter, if constrained to the
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four neighbors of each pixel, corresponds to a discrete version of the Perona-Malik fil-

ter. Subsequently, Barash [25] used adaptive smoothing as a link between anisotropic

diffusion and bilateral filtering, each of which can be viewed as a generalization of the

former; while Elad [101] and Barash and Comaniciu [26] have shown that bilateral

filtering is equivalent to a sum of several Perona-Malik filters at different scales.

3.2.3 Numerical Experiments for the Inhomogeneous Non-
linear Diffusion and Bilateral Filter Model

In order to compare the performance of the proposed model we implemented the three

models below using finite differencing, and a simple performance measure based on

the correlation between the noise-free image and the three filtered images8. Model 1

is the classic Perona-Malik model, Eq. (3.3),

ut −∇ · (g (|∇u|2) · ∇u
)

= 0, on Ω× [ 0,∞) ,

u (x, 0) = u0 (x) , on Ω,

〈g · ∇u,n〉 = 0, on ∂Ω× (0,∞) ,

g
(|∇u|2) =

1

1 + |∇u|2/λ2
, λ = 10−2.

(3.12)

The parameter λ = 10−2 was estimated as an average of the ‘robust scale’ proposed

in [41, 42], using the initial state of the images employed in our tests.

Model 2 is the Perona-Malik variant by Catté, Lions, Morel and Coll, Eq. (3.5),

ut −∇ · (g (|∇uσ|2
) · ∇u

)
= 0, on Ω× [ 0,∞) ,

u (x, 0) = u0 (x) , on Ω,

〈g · ∇u,n〉 = 0, on ∂Ω× (0,∞) ,

g
(|∇uσ|2

)
=

1

1 + |∇uσ|2
/
λ2

, λ = 10−2,

uσ = Gσ ∗ u, σ = 1.

(3.13)

8We refer the reader to chapter 5 for a description of the algorithms to implement these models.
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It has been shown [253] that σ = 1 is sufficient for a large interval of noise variances,

provided that the noise in neighboring pixels is uncorrelated and that the grid size is

one.

Model 3 is the proposed model, Eq. (3.11),

ut −∇ · (g (|∇ubf |2
) · ∇u

)
= 0, on Ω× [ 0,∞) ,

u (x, 0) = u0 (x) , on Ω,

〈g · ∇u,n〉 = 0, on ∂Ω× (0,∞) ,

g
(|∇ubf |2

)
=

1

1 + |∇ubf |2
/
λ2

, λ = 10−2,

ubf = Gbf ∗ u, σd = 3, σr = 10−2.

(3.14)

The parameters σd and σr are chosen according to the desired amount of low-pass

filtering and desired amount of combination of pixel values, respectively [349]. We

loosely followed the recommendations given in [214] for choosing σd, and the ones in

[284] for choosing σr. They give us a compact kernel that allows a very fast execution

of the bilateral filtering.

The experiment consisted in running the three models using an explicit Euler

method with a time step9 of δt = 10−2, and trying to restore the noise-free image,

f , that has been perturbed by additive Gaussian white noise. Figs. 3.4, 3.6, 3.8,

3.10, and 3.12 show the images of Lena, the Clown, the Boats, the Baboon, and the

Cameraman, respectively, both the noise-free and noisy images after perturbing them

with Gaussian white noise of zero mean and variance 0.01. These are benchmark

images that will be used throughout this work in comparative experiments. In the

experiment, the three models were run for 50 iterations and the correlation coefficient

between the noise-free image and each of the filtered images was measured at each

9Weickert, Romeny, and Viergever [381] have shown that for explicit discretization schemes, the
stability condition (assuming δx = 1 and ∀s : g (s) 6 1) is δt < 1/(2d), with d being the number of
dimensions of the data, which for a 2D image d = 2.
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iteration. For every case, we observe that the best image restored by the proposed

model is closer to the noise-free image than the best images restored by the other

two models tested (see Figs. 3.5, 3.7, 3.9, 3.11 and 3.13 and table 3.1). We can also

observe that the proposed model performs ‘in between’ the other two models in terms

of speed of restoration. The Catté-Lions-Morel-Coll model accomplishes the fastest

restoration, i.e., it attains its best restored image in fewer iterations than the other

two methods. The classic Perona-Malik model achieves a better restoration if we were

to iterate beyond the optimal stopping times of the three models, i.e., reaching 50

iterations in this case. Lastly, in order for any of the three models to accomplish its

best possible restoration, we have to be able to stop the diffusion process at the peak

of its performance, in the absence of the noise-free image. In general, this remains an

open problem. In subsection 3.2.4 we propose a procedure that works very well with

all the models considered in this work.

Table 3.1: Similarity Performance by Model

Experiment Perona-Malik Catté et al. Bazán-Blomgren

Lena 0.9584 0.9556 0.9593

the Clown 0.9763 0.9762 0.9771

the Boats 0.9537 0.9498 0.9549

the Baboon 0.8979 0.8947 0.8992

the Cameraman 0.9785 0.9736 0.9795
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Figure 3.4: (left to right) Noise-free image of Lena along with the noisy
image of Lena which has been perturbed by Gaussian white noise with zero
mean and variance 0.01. The correlation coefficient between the noise-free
image and the noisy image, corr (f, u0), is 0.8661.
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Figure 3.5: Correlation coefficient between the noise-free image of Lena and
the filtered image of Lena at each iteration, along with the noise-free image
of Lena. The maximum value of the correlation coefficient for each model is
as follows: Perona-Malik, 0.9584; Catté-Lions-Morel-Coll, 0.9556; Proposed
Model, 0.9593.
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Figure 3.6: (left to right) Noise-free image of the Clown along with the noisy
image of the Clown which has been perturbed by Gaussian white noise with
zero mean and variance 0.01. The correlation coefficient between the noise-
free image and the noisy image, corr (f, u0), is 0.9301.
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Figure 3.7: Correlation coefficient between the noise-free image of the Clown
and the filtered image of the Clown at each iteration, along with the noise-
free image of the Clown. The maximum value of the correlation coefficient
for each model is as follows: Perona-Malik, 0.9763; Catté-Lions-Morel-Coll,
0.9762; Proposed Model, 0.9771.
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Figure 3.8: (left to right) Noise-free image of the Boats along with the
noisy image of the Boats which has been perturbed by Gaussian white noise
with zero mean and variance 0.01. The correlation coefficient between the
noise-free image and the noisy image, corr (f, u0), is 0.8692.
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Figure 3.9: Correlation coefficient between the noise-free image of the Boats
and the filtered image of the Boats at each iteration, along with the noise-
free image of the Boats. The maximum value of the correlation coefficient
for each model is as follows: Perona-Malik, 0.9537; Catté-Lions-Morel-Coll,
0.9498; Proposed Model, 0.9549.
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Figure 3.10: (left to right) Noise-free image of the Baboon along with the
noisy image of the Baboon which has been perturbed by Gaussian white
noise with zero mean and variance 0.01. The correlation coefficient between
the noise-free image and the noisy image, corr (f, u0), is 0.8381.
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Figure 3.11: Correlation coefficient between the noise-free image of the
Baboon and the filtered image of the Baboon at each iteration, along with
the noise-free image of the Baboon. The maximum value of the correlation
coefficient for each model is as follows: Perona-Malik, 0.8979; Catté-Lions-
Morel-Coll, 0.8947; Proposed Model, 0.8992.
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Figure 3.12: (left to right) Noise-free image of the Cameraman along with
the noisy image of the Cameraman which has been perturbed by Gaussian
white noise with zero mean and variance 0.01. The correlation coefficient
between the noise-free image and the noisy image, corr (f, u0), is 0.9280.
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Figure 3.13: Correlation coefficient between the noise-free image of the
Cameraman and the filtered image of the Cameraman at each iteration,
along with the noise-free image of the Cameraman. The maximum value of
the correlation coefficient for each model is as follows: Perona-Malik, 0.9785;
Catté-Lions-Morel-Coll, 0.9736; Proposed Model, 0.9795.
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3.2.4 Diffusion Stopping Criterion

Determining when the diffusion process should be stopped is crucial for obtaining a

good image restoration. Several authors have addressed this issue in the past in an

attempt to devise an optimal stopping criterion. Sporring and Weickert [337] focused

on the maximum entropy change by scale to estimate the size of image structures.

They argued that the minimum change by scale indicates especially stable scales with

respect to evolution time, and conjectured that these scales could be good candidates

for stopping times in nonlinear diffusion processes. Weickert [377] also pointed out

that the monotonically decreasing ‘relative variance,’ 0 6 var (u)/var (u0) 6 1, could

be used to measure the distance of u from the initial state u0 and, by prescribing

an appropriate value for the relative variance, it can constitute a good criterion for

stopping the nonlinear diffusion.

Dolcetta and Ferretti [92] formulated a stopping criterion within the framework of

optimal control theory. They considered the minimization of the performance index

E (t) =

∫ t

0

(Ec + Eα) dt,

where Ec is the computing cost and Eα is the stopping cost, which encourages diffusion

for small values of the scale factor. The authors in [92] argued that a careful balancing

of the two terms is necessary for achieving good results, and suggested to take Ec =

c and Eα = − (∫
Ω
|u− u0|2 dx

)α/2
, for some positive constants c and α. Mrázek

[254] developed a new interesting time-selection strategy based on the correlation

between the signal and the noise. He argued that, if the noise-free image and the

noise were uncorrelated, it is appropriate to require that their artificial substitutes,

u and (u0 − u), share the same property, and select the stopping time such that

T = arg min
t

corr (u0 − u, u). The author in [254] also pointed out that the assumption

about the noise-free image and the noise being uncorrelated holds initially, but it does
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not necessarily hold for the filtered image, u, and the filtering noise, (u0 − u). Solo

[331] derived a Stein’s unbiased risk estimate (SURE) -based criterion for selecting the

scale that minimizes the prediction error PE(t) under L2 loss, assuming independent

and identically-distributed (i.i.d.) Gaussian noise of known variance and quadratic

penalty. More recently, Papandreou and Maragos [282] studied this problem in a

statistical model selection framework and used cross-validation techniques to address

it in a principled way. The computational cost seems to be a principal concern

in these types of formulations. Awate and Whitaker [16] found empirically that

entropy reduction by gradient descent reduces the randomness introduced by the

noise faster than it reduces the inherent randomness in the signal. They suggested

that an efficient stopping time would be when the relative rate of change of entropy,

within two consecutive iterations, falls below some threshold to be chosen.

We proposed [33] a new (very simple) diffusion-stopping criterion inspired by

observation of the behavior of the correlation between the noise-free image and the

filtered image, corr (f, u), and the correlation between the noisy image and the filtered

image, corr (u0, u). Although the former measure is only available in experimental

settings it helps validate the usefulness of the latter. The nonlinear diffusion process

starts from the noisy image, u0 (x), and creates a set of filtered images, u (x, t),

by gradually removing noise and details from scale to scale until, as t → ∞, the

image converges to a constant value. During this process the correlation between the

noise-free image and the filtered image increases as the filtered image moves closer

to the noise-free image. This behavior continues until it reaches a peak from where

the measure decreases as the filtered image moves slowly towards a constant value.

During the same process, the correlation between the noisy image and the filtered

image decreases gradually from a value of 1.0 (perfect correlation), to a constant value,

as the filtered image becomes smoother (see Fig. 3.14). By comparing both measures,
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we observe that as corr (f, u) reaches its maximum (the best possible restored image),

the curvature of corr (u0, u) changes sign. This suggests that a good stopping point of

the diffusion process is where the second derivative of corr (u0, u) reaches a maximum.
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Figure 3.14: The correlation coefficient between the noise-free image and
the filtered image increases as the filtered image moves closer to the noise-
free image. When the measure reaches a peak it decreases as the filtered
image moves slowly towards a constant value. The correlation coefficient
between the noisy image and the filtered image decreases gradually from a
value of 1.0 (perfect correlation), to a constant value as the filtered image
becomes smoother. The shaded region corresponds to good stopping points
for the diffusion process.

3.2.5 Numerical Experiments for the Diffusion Stopping Cri-
terion

The performance of the proposed stopping criterion can be observed below along with

the restored images of Lena (Figs. 3.15, 3.16 and 3.17), the Boats (Figs. 3.21, 3.22
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and 3.23), the Clown (Figs. 3.18, 3.19 and 3.20), the Baboon (Figs. 3.24, 3.25 and

3.26), and the Cameraman (Figs. 3.27, 3.28 and 3.29). We observe that the stopping

criterion is almost optimal, allowing the diffusion process to stop near the point where

the three filtering methods reach their best possible image restorations. In our exper-

iments, we also observed that the stopping criterion overestimate or underestimate

the stopping time in two cases: when the noisy image has ‘excess’ details, e.g., the

Baboon, the stopping criterion tends to stop a little too late, causing some loss of

details. (This phenomenon has been also observed in [253].) When the noisy image

is a cartoon-like image, e.g., the Cameraman, the stopping criterion tends to stop a

little too soon (but only for the proposed model), causing a premature output. This

is due to the design of the filter which prevents diffusion across edges. A summary

of the results for the stopping criterion vs. optimal stopping time experiments are

shown in table 3.2.

Table 3.2: Stopping Criterion Performance by Model

Experiment Perona-Malik Catté et al. Bazán-Blomgren

Lena
Criterion: 28
Optimal: 31

Criterion: 15
Optimal: 18

Criterion: 19
Optimal: 24

the Boats
Criterion: 29
Optimal: 28

Criterion: 15
Optimal: 16

Criterion: 19
Optimal: 21

the Clown
Criterion: 29
Optimal: 27

Criterion: 15
Optimal: 16

Criterion: 19
Optimal: 21

the Baboon
Criterion: 38
Optimal: 20

Criterion: 17
Optimal: 9

Criterion: 25
Optimal: 14

the Cameraman
Criterion: 27
Optimal: 29

Criterion: 15
Optimal: 14

Criterion: 17
Optimal: 23
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Figure 3.15: Stopping criterion performance along with the restored image
of Lena using the proposed model. The measure corr (f, u) suggests stopping
the diffusion process after 24 iterations, while the proposed stopping criterion
suggests stopping it after 19 iterations.
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Figure 3.16: Stopping criterion performance along with the restored image
of Lena using the Perona-Malik model. The measure corr (f, u) suggests
stopping the diffusion process after 31 iterations, while the proposed stopping
criterion suggests stopping it after 28 iterations.
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Figure 3.17: Stopping criterion performance along with the restored image
of Lena using the Catté-Lions-Morel-Coll model. The measure corr (f, u)
suggests stopping the diffusion process after 18 iterations, while the proposed
stopping criterion suggests stopping it after 15 iterations.
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Figure 3.18: Stopping criterion performance along with the restored image
of the Clown using the proposed model. The measure corr (f, u) suggests
stopping the diffusion process after 21 iterations, while the proposed stopping
criterion suggests stopping it after 19 iterations.
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Figure 3.19: Stopping criterion performance along with the restored image
of the Clown using the Perona-Malik model. The measure corr (f, u) suggests
stopping the diffusion process after 27 iterations, while the proposed stopping
criterion suggests stopping it after 29 iterations.
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Figure 3.20: Stopping criterion performance along with the restored im-
age of the Clown using the Catté-Lions-Morel-Coll model. The measure
corr (f, u) suggests stopping the diffusion process after 16 iterations, while
the proposed stopping criterion suggests stopping it after 15 iterations.
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Figure 3.21: Stopping criterion performance along with the restored image
of the Boats using the proposed model. The measure corr (f, u) suggests
stopping the diffusion process after 21 iterations, while the proposed stopping
criterion suggests stopping it after 19 iterations.
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Figure 3.22: Stopping criterion performance along with the restored image
of the Boats using the Perona-Malik model. The measure corr (f, u) suggests
stopping the diffusion process after 28 iterations, while the proposed stopping
criterion suggests stopping it after 29 iterations.

51



0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Stopping Criterion: Catte−Lions−Morel−Coll

Iterations

N
o

rm
a

liz
e

d
 C

o
rr

e
la

ti
o

n
 C

o
e

ff
ic

ie
n

t

 

 

15

16

corr( f ,u)
Stopping Criterion

Figure 3.23: Stopping criterion performance along with the restored im-
age of the Boats using the Catté-Lions-Morel-Coll model. The measure
corr (f, u) suggests stopping the diffusion process after 16 iterations, while
the proposed stopping criterion suggests stopping it after 15 iterations.
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Figure 3.24: Stopping criterion performance along with the restored image
of the Baboon using the proposed model. The measure corr (f, u) suggests
stopping the diffusion process after 14 iterations, while the proposed stopping
criterion suggests stopping it after 25 iterations.
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Figure 3.25: Stopping criterion performance along with the restored image
of the Baboon using the proposed model. The measure corr (f, u) suggests
stopping the diffusion process after 20 iterations, while the proposed stopping
criterion suggests stopping it after 38 iterations.
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Figure 3.26: Stopping criterion performance along with the restored image
of the Baboon using the proposed model. The measure corr (f, u) suggests
stopping the diffusion process after 9 iterations, while the proposed stopping
criterion suggests stopping it after 17 iterations.
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Figure 3.27: Stopping criterion performance along with the restored image
of the Cameraman using the proposed model. The measure corr (f, u) sug-
gests stopping the diffusion process after 23 iterations, while the proposed
stopping criterion suggests stopping it after 17 iterations.
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Figure 3.28: Stopping criterion performance along with the restored image
of the Cameraman using the proposed model. The measure corr (f, u) sug-
gests stopping the diffusion process after 29 iterations, while the proposed
stopping criterion suggests stopping it after 27 iterations.
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Figure 3.29: Stopping criterion performance along with the restored image
of the Cameraman using the proposed model. The measure corr (f, u) sug-
gests stopping the diffusion process after 14 iterations, while the proposed
stopping criterion suggests stopping it after 15 iterations.
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3.3 Anisotropic Nonlinear Diffusion Models in Elec-

tron Tomography

A different way of introducing regularization to the Perona-Malik model is through

anisotropic diffusion. We should note that the Perona-Malik model is actually (inho-

mogeneous) isotropic, since it utilizes a scalar-valued diffusivity, g, which is adapted

to the underlying image structure. The main advantage of anisotropic diffusion mod-

els over their isotropic counterparts is that they not only account for the modulus

of the edge detector, but also its directional information. Isotropic diffusion will in-

hibit diffusion near edges, making it hard to eliminate noise near them. Anisotropic

diffusion, on the other hand, will allow diffusion parallel to the edges while avoiding

diffusing perpendicular to them.

Förstner and Gülch [114] and Bigün and Granlund [40], concurrently introduced

the matrix field of the structure tensor for image processing, and it is the basis for to-

day’s anisotropic diffusion models. The main idea behind these models is to construct

the orthogonal system of eigenvectors v1, v2, of the diffusion tensor Dσ in such way

that they will reveal the presence of edges, i.e., v1 ‖ ∇uσ (parallel) and v2⊥∇uσ (per-

pendicular). Then we choose appropriate (corresponding) eigenvalues that will allow

smoothing parallel to the edges and avoid doing so across them. Thus, the diffusion

tensor Dσ steers the diffusion process in such a way that the eigenvectors prescribe

the diffusion directions and the corresponding eigenvalues determine the amount of

diffusion along these directions. Cottet and Germain [74] and Weickert [371, 374]

were among the first authors to propose anisotropic nonlinear diffusion models for

image processing. Weickert [370] has also provided a mathematical foundation for

continuous anisotropic nonlinear diffusion filtering as a scale-space transformation,

adequate for simplifying images without renouncing the edge enhancing capability.

56



Anisotropic nonlinear diffusion (AND) in electron microscopy was introduced by

Frangakis and Hegerl [118, 119] . They proposed solving

ut −∇ · (Dσ · ∇u) = 0, on Ω× [ 0,∞) ,

u (x, 0) = u0 (x) , on Ω,

〈Dσ · ∇u,n〉 = 0, on ∂Ω× (0,∞) ,

(3.15)

where the diffusivity matrix Dσ is structured as follows:

Dσ =
[

v1 v2 v3

]



λ1 0 0
0 λ2 0
0 0 λ3


 [

v1 v2 v3

]T
. (3.16)

The vectors vi are the eigenvectors of the image’s structure tensor Jσ = ∇uσ · ∇uT
σ

or its convolved version Jρ = Gρ ∗ Jσ, where Gρ is a Gaussian kernel of width ρ. The

parameters λi are functions of the eigenvalues µ1 ≥ µ2 ≥ µ3, of the structure tensor

Jσ (or Jρ). Together, the eigenvalues µi and the eigenvectors vi, characterize the

local structural features of the image u within a neighborhood of size O (ρ). Each

eigenvalue µi reflects the variance of the gray level in the direction of the corresponding

eigenvector vi, while each parameter λi controls the diffusion flux in the direction of

vi, and has to be chosen carefully.

Based on the works of Weickert [375, 376, 377, 382], the authors in [118, 119]

chose the parameters λi to create a hybrid model that combines both edge enhancing

diffusion (EED) and coherence enhancing diffusion (CED). EED is based on the

directional information of the eigenvectors of the structure tensor Jσ, and its aim is

to preserve and enhance edges. CED is based on the directional information of the

eigenvectors of the convolved structure tensor Jρ, and is intended for improving flow-

like structures and curvilinear continuities. For EED, the parameters λi are chosen

following the Perona-Malik model [294] with

λ1 = λ2 = g
(|∇uσ|2

)
,

λ3 = 1,
(3.17)
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while for CED they are defined according to

λ1 = λ2 = α,

λ3 =

{
α if µ1 = µ3

α + (1− α) exp
(−C

/
(µ1 − µ3)

2) else,

(3.18)

with user-defined free parameters α (regularization constant, typically set to 10−3)

and C > 0. Structures with (µ1 − µ3)
2 > C will be regarded as line-like patterns and

will be enhanced.

To combine the advantages of EDD and CED the approach presented in [118, 119]

uses a switch based on comparing an ad hoc threshold parameter10 to the local relation

between structure and noise (µ1 − µ3). EDD is used when the difference (µ1 − µ3)

is smaller than the threshold parameter. When it is larger, the model would switch

to CED. In a separate communication, Frangakis, Stoschek and Hegerl [121] applied

the hybrid model to 2D and 3D synthetic data and compared it with conventional

methods as well as with wavelet transform filtering. They concluded that the model

exhibits excellent performance at lower frequencies, achieving considerable improve-

ment in the SNR, but that due to the low-pass characteristics of the diffusion and

the discretization stencil, high frequencies components of the signal are irreversibly

degraded. They also applied the model to volumetric data as obtained by electron

tomography. A considerable SNR improvement was achieved for both of the examples

presented. Thus, it greatly facilitated the posterior segmentation and visualization.

It was again noted that the method acts as a low-pass filter, and that this is an

expected, yet unwanted, effect of the theoretical considerations involved.

Fernández and Li [111, 112] proposed a variant to the model in [118, 119] for ET

filtering by anisotropic nonlinear diffusion, capable of reducing noise while preserving

both planar and curvilinear structures. They provided their model with a background

10The threshold is computed from the mean value of (µ1 − µ3) in a subvolume of the image
containing only noise.
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filtering mechanism that highlights the interesting biological structural features and a

new criterion for stopping the iterative process. The CED model in Eq. (3.18) diffuses

unidirectionally along the direction of minimum change, v3, and efficiently enhances

line-like structures (where µ1 ≈ µ2 À µ3). It was argued in [111] that a significant

number of structural features from biological specimens resemble plane-like structures

at local scale. Therefore, the authors in [111, 112] defined a set of metrics to discern

whether the features are plane-like, line-like, or isotropic. The metrics defined are:

P1 =
µ1 − µ2

µ1

, P2 =
µ2 − µ3

µ1

, P3 =
µ3

µ1

, (3.19)

which satisfy 0 ≤ Pi ≤ 1, ∀ i and P1 + P2 + P3 = 1. In Eq. (3.19), µ1, µ2, and

µ3 are the eigenvalues of the convolved structure tensor, Jρ. These metrics are such

that when P1 > P2 and P1 > P3, we have a plane-like structure; when P2 > P1 and

P2 > P3, we have a line-like structure; and when P3 > P1 and P3 > P2, we have an

isotropic structure. To achieve planar enhancing diffusion, Eq. (3.18) is modified as

follows:
λ1 = α,

λ2 =

{
α if µ1 = µ2

α + (1− α) exp
(−C2

/
(µ1 − µ2)

2) else,

λ3 =

{
α if µ1 = µ3

α + (1− α) exp
(−C3

/
(µ1 − µ3)

2) else.

(3.20)

For the case of isotropic structure the model employs what Fernández and Li call

‘background diffusion’, based on Gaussian smoothing.

To address the crucial question of when to stop the filtering process Fernández

and Li proposed two different criteria. In [111], they proposed a stopping criterion

based on the evolution of the variance in the noise-only subvolume, V , from which

the EED/CED threshold’s switch was obtained. They devised a ratio similar to the
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one proposed in [377], the relative noise variance

rV (t) =
var (u)V

var (u0)V

,

where var (u0)V and var (u)V represent the variance of the gray values of the subvol-

ume V at time 0 and t, respectively. Since rV (t) decreases monotonically from 1 to 0,

a suitable threshold can be set based on the desired noise reduction factor. However,

since this criterion does not consider the entire volume, it can not guarantee that the

signal will not be affected by the diffusion. To avoid this, they proposed a different

criterion [112] similar to the one proposed in [255]. The noise-estimate variance crite-

rion states that the optimal stopping time is the time (iteration) in which var (u0 − u)

reaches var (u0)V , which can be expressed analytically as

T = arg min
t
{|var (u0)V − var (u0 − u)|} ,

where u0 and u represent the gray values of the whole volume at time 0 and t,

respectively.

The clever AND for the ET approach mentioned above also presents a drawback.

Brox and Weickert [54] argued that the linear structure tensor Jρ, derived from Jσ

by smoothing each component using a Gaussian kernel with standard deviation ρ,

closes structures of a certain scale very well and removes the noise appropriately.

However, it only preserves orientation discontinuities and does not preserve magnitude

discontinuities, causing object boundaries to dislocate. Brox, van den Boomgaard,

Lauze, van de Weijer, Weickert, Mrázek, and Kornprobst [53] argued that as soon as

the orientation in the local neighborhood is not homogeneous, the local neighborhood

induced by the Gaussian filter integrates ambiguous structure information. This

information might not belong together and could lead to erroneous estimations. In

[53] the authors proposed two alternatives to overcome this problem. The first solution
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involves the use of robust statistics for choosing one of the ambiguous orientations

[360]. The second solution is to adapt the neighborhood to the data by using the

Kunahara-Nagao operator [22, 201, 260]. van den Boomgaard [359] showed that the

classic Kunahara-Nagao operator can be regarded as a ‘macroscopic’ version of a

PDE image evolution that combines linear diffusion with morphologic sharpening.

Other similar approaches involve the choosing of the local neighborhood via adaptive

Gaussian windows [245, 246, 261], and the use of nonlinear diffusion that can perform

data-adaptive smoothing that prevents the integration of ambiguous data [55, 56, 380].

Brox and Weickert [54] proposed to address the aforementioned problem by re-

placing the Gaussian convolution by a discontinuity preserving diffusion method. This

is obtained by considering the structure tensor Jσ, as an initial matrix field that is

evolved under the diffusion equation

∂tuij −∇ ·

D





∇σ 4

√∑

k,l

u2
kl


 ·


∇σ 4

√∑

k,l

u2
kl




T
 · ∇uij


 = 0, (3.21)

∀ i, j, where the evolving matrix field uij (x, t) uses Jσ (x) as the initial condition for

t = 0. The matrix D (A) = T (g (λi)) ·TT is the diffusion tensor for A = T (λi) ·TT.

The latter represents a principal axis transformation of A with the eigenvalues λi as

the elements of a diagonal matrix, diag (λi), and the normalized eigenvectors as the

columns of the orthogonal matrix, T. For the diffusivity they suggested g
(|∇uσ|2

)
=

1 − exp
(−3.31488

/
(|∇uσ|/λ)8), for c > 0, and λ is the contrast parameter. In Eq.

(3.21),∇σ denotes the∇ operator where Gaussian derivatives with standard deviation

σ are employed. This approach tends to prevent boundary dislocations while keeping

the desirable properties of the linear structure tensor. In section 3.4 we introduce a

new approach based on anisotropic nonlinear diffusion and bilateral filter for electron

tomography. It allows noise removal and structure closure at certain scales, while

preserving both the orientation and magnitude of discontinuities.

61



3.4 Anisotropic Nonlinear Diffusion and Bilateral

Filter Model in Electron Tomography

In section 3.3 we discussed the application of anisotropic nonlinear diffusion in elec-

tron tomography. The approach used in [111, 112, 118, 119] is based on a hybrid

EED/CED denoising mechanism that performs very well on data containing low- to

mid-frequency signal components. The technique greatly facilitates image enhance-

ment for subsequent segmentation and improved visualization of complex biological

specimens. In this section, we propose a new image smoothing and edge detection

technique for electron tomography, as an extension to the model we proposed in [33].

This approach employs a combination of anisotropic nonlinear diffusion and bilateral

filter. Jiang, Baker, Wu, Bajaj and Chiu [178] introduced bilateral filtering for the

removal of noise from biological electron microscopy data. They have shown that bi-

lateral filtering is a very effective mechanism for suppressing the noise in tomograms,

while preserving high resolution secondary structure features.

To the best of our knowledge, Bajaj, Wu and Xu [19] and Bajaj and Yu [20] were

the first ones to experiment with bilateral filtering coupled to an evolution driven

anisotropic geometric diffusion PDE. They called their method ‘volumetric anisotropic

diffusion model’ and it is based on a level set formulation that uses bilateral filtering

as a pre-filtering step, in order to obtain more precise curvature information. For the

enhancement of 2D features, the model requires the selection of two free parameters

that control the diffusion rate, and a threshold switch associated with the image. Our

proposed model aims at incorporating the best of both approaches, anisotropic non-

linear diffusion and bilateral filter, in a single computationally robust implementation.

The model requires neither the choosing of parameters nor the setting of threshold

switches, and it preserves both the orientation and magnitude of discontinuities. The
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model is also equipped with the diffusion stopping criterion proposed in [33], based

on the second derivative of the correlation between the noisy image and the filtered

image.

3.4.1 Local Structure Analysis

The structure tensor of a 3D tomogram u, is a symmetric positive semidefinite matrix

given by the product Jσ = ∇uσ · ∇uT
σ , with uσ = Gσ ∗ u where Gσ is a Gaussian

kernel of width σ [371, 374]. This structure tensor is the most stable and reliable

descriptor of the local structure of an image [372]. Similar to our approach in [33], we

propose using a refined estimate of the gradient of u at voxel x = (x, y, z), obtained

by applying a bilateral filter in place of the Gaussian kernel. We have seen above the

advantages of BF as a technique for smoothing images while preserving edges. The

new structure tensor is therefore

Jbf = ∇ubf · ∇uT
bf =




(ubf )
2
x (ubf )x (ubf )y (ubf )x (ubf )z

(ubf )x (ubf )y (ubf )
2
y (ubf )y (ubf )z

(ubf )x (ubf )z (ubf )y (ubf )z (ubf )
2
z


 . (3.22)

The image’s local structure features can be determined by performing the eigen-

analysis of the structure tensor:

Jbf = µ1v1 · vT
1 + µ2v2 · vT

2 + µ3v3 · vT
3 , µ1 > µ2 > µ3, (3.23)

where, as before, µi are the eigenvalues providing the average contrast along the

eigen-directions, and vi are the corresponding eigenvectors that give the preferred

local orientations.

To further analyse the basic local structures of the 3D tomogram, we can decom-

pose the structure tensor Jbf into three parts: the linear part, Jbf1 , the planar part,

Jbf2 , and the isotropic part, Jbf3 , as

Jbf = Jbf1 + Jbf2 + Jbf3 , (3.24)
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where
Jbf1 = (µ1 − µ2)v1 · vT

1 ,

Jbf2 = (µ2 − µ3)
(
v1 · vT

1 + v2 · vT
2

)
,

Jbf3 = µ3

(
v1 · vT

1 + v2 · vT
2 + v3 · vT

3

)
.

(3.25)

This decomposition helps us interpret, visually, the relative contributions of the basic

local structures: linear, planar, and isotropic [386]. Fig. 3.30 shows a tensor glyph

for each of the following three cases: when Jbf1 is dominant, linear; when Jbf2 is

dominant, planar; and when Jbf3 is dominant, isotropic.
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Figure 3.30: The tensor glyphs reveal the basic local structures for the cases:
linear, when Jbf1 is dominant; planar, when Jbf2 is dominant; and isotropic,
when Jbf3 is dominant. The vectors v1, v2, and v3 are the corresponding
eigenvectors to the eigenvalues µ1, µ2, and µ3, respectively. The figure was
rendered using the tensor visualization tool T-FLASH [386].

We can also use the equivalent interpretation given in [111] where, based on

the relative magnitudes of the eigenvalues, they characterize the three basic local

structures as: (i) Linear structures, µ1 ≈ µ2 À µ3, have a preferred direction along

eigenvector v3, while eigenvectors v1 and v2 are perpendicular to the linear structure;

(ii) Planar structures, µ1 À µ2 ≈ µ3, have two preferred directions along eigenvectors

v2 and v3, while eigenvector v1 is perpendicular to the planar structure; (iii) Isotropic

structures, µ1 ≈ µ2 ≈ µ3, have no preferred direction. We will take advantage of the

above interpretation of the information provided by the structure tensor at each

voxel x to devise a robust AND image restoration model for 3D electron tomograms
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of mitochondria. Images of mitochondria contain many flow-like patterns and they

are usually of very poor quality. For it is necessary to enhance them by closing

interrupted structures. To exploit the coherence and curvilinear continuity, while

connecting possible interrupted lines and planes, we average the structure tensor

Jbf , over a region by applying bilateral filtering in the form Jbf = Gbf ∗ Jbf . The

directional information is thereby averaged, although the structure of the region is

still maintained by the discontinuity preserving bilateral filtering.

3.4.2 Diffusion Tensor Construction

The diffusion tensor Dbf ∈ R3×3, controls the smoothing across the 3D tomogram.

We define the diffusion tensor as a function of the structure tensor Jbf ,

Dbf =
[

v1 v2 v3

]



λ1 0 0
0 λ2 0
0 0 λ3


 [

v1 v2 v3

]T
, (3.26)

where vi are the structure tensor’s eigenvectors. The eigenvalues of the diffusion

tensor, λi, define the strength of the smoothing along the eigen-directions vi, and

allow the application of different diffusion processes: (i) Linear diffusion or Gaussian

smoothing is applied when λi = 1, ∀ i, (ii) Nonlinear diffusion is applied if λi =

g
(|∇u|2) ,∀ i, (iii) Anisotropic nonlinear diffusion can be applied by setting the values

λi so they reflect the image’s underlying local structure. We have already mentioned

the strengths and weaknesses of the three diffusion processes.

As mentioned in section 3.3, it is now common to use a hybrid approach that

switches the diffusion process from EED to CED and vice versa, based on selected

ad hoc thresholds [118, 119]. Switching to a third diffusion mode, Gaussian diffusion

(GD), in areas where the image becomes predominantly isotropic (based on another ad

hoc threshold) has also been suggested [111, 112]. We propose to use the anisotropic

diffusion process where the model switches among the three modes, EED/CED/GD,
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automatically based on information extracted locally from the signal. The model

can be regarded as ‘structure enhancing diffusion’ (SED), where the eigenvalues are

defined as11

λ1 = g
(|∇ubf |2

)
,

λ2 =

{
g

(|∇ubf |2
)

if µ1 = µ2

g
(|∇ubf |2

)
+

(
1− g

(|∇ubf |2
))

exp
(−C2

/
(µ1 − µ2)

2) else,

λ3 =

{
g

(|∇ubf |2
)

if µ1 = µ3

g
(|∇ubf |2

)
+

(
1− g

(|∇ubf |2
))

exp
(−C3

/
(µ1 − µ3)

2) else.

(3.27)

The coherence measures (µ1 − µ2)
2 and (µ1 − µ3)

2 are computed based on the eigen-

values of the averaged structure tensor Jbf , and the parameters C2 and C3 act as

thresholds such that structures where (µ1 − µ2)
2 > C2 and (µ1 − µ3)

2 > C3 are re-

garded as planar patterns, while structures where (µ1 − µ2)
2 < C2 and (µ1 − µ3)

2 >

C3 are regarded as linear patterns. These preferred orientations are summarized in

table 3.3.

Table 3.3: Structure Patterns Based on Coherence Measures

(µ1 − µ2)
2 (µ1 − µ3)

2 Local Structure

> C2 > C3 Planar
< C2 < C3 Linear

In Eq. (3.27), g
(|∇ubf |2

)
is a monotonically decreasing function such as Perona-

Malik’s [294]

g
(|∇ubf ) |2

)
=

1

1 + |∇ubf |2
/
λ2

, (3.28)

with λ > 0 the typical contrast threshold parameter. There are several ways to set

this parameter. Perona and Malik [294] suggested using the idea presented by Canny

[60] and set λ as a percentile, p, of the image gradient magnitudes at each iteration.

11In practice, the logical ‘if µ1 = µ2 then’ and ‘if µ1 = µ3 then’ are unnecessary if we use
exp

(
−C2

/(
(µ1 − µ2)

2 + ε
))

and exp
(
−C3

/(
(µ1 − µ3)

2 + ε
))

, for small ε.
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(The recommended value is commonly p = 90%.) A by-product of this approach is

a decreasing λ, which has an stabilizing effect on the diffusion process [253]. Black,

Sapiro, Marimont and Heeger [42] and Black and Sapiro [41] recommended using

robust statistics to globally or locally estimate λ. They proposed computing

λ = 1.4826 median (||∇ubf | −median (|∇ubf |)|) , (3.29)

where the constant 1.4826 arrives from the fact that a normal distribution with unit

variance has a median absolute deviation (MAD) of roughly 0.6745 = 1/1.4826. A

local estimate of the parameter, λl, can be set by considering λl = max (λ, λe), where

λe is computed locally by applying Eq. (3.29) on a small predefined region. We will

apply the former recommendation in our experiments.

x

y

x
u

y
u

Figure 3.31: Fragment of an image where an edge pixel’s gradients has
components uy = 0 and 0 < |ux| 6 1, depending on the gray values in the
two regions.

The advantages of the proposed definitions for the diffusion tensor’s eigenvalues

become evident when we perform a 2D analysis of the behavior of λ1 and λ2. Assume

we are standing on an edge pixel as shown in Fig. 3.31. In this case uy = 0 and

0 < |ux| 6 1, depending on the gray values in the two regions. The typical hybrid

approach will use a chosen threshold to switch between EED and CED (see Eq. (3.17)

and Eq. (3.20)), and set the diffusion tensor’s eigenvalues to either λ1 = g
(|∇u|2)

or λ1 = α; and either λ2 = 1 or λ2 = α + (1− α) exp
(−C

/
(µ1 − µ2)

2). Assuming,
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e.g., the values12 α = 10−3 and C = 4.5 × 10−4, and considering that (µ1 − µ2)
2 =

(
u2

x − u2
y

)2
+4 (uxuy)

2, we can plot λ1 and λ2 along uy = 0 and interpret the following

(see Fig. 3.32):
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Figure 3.32: Eigenvalues λ1 and λ2 for the EED, CED, and SED models.
The hybrid EED/CED model switches sharply between the EED and CED
curves based on an ad hoc threshold.

(i) For low gradient |ux| → 0, we want the model to assume GD mode (recall that

|uy| = 0). In this case, the hybrid EED/CED model will assume EED mode where

λ1 ≈ 1 and λ2 = 1. Similarly, the SED model will assume λ1 ≈ 1 and λ2 ≈ 1.

12Parameter C is typically set to 1/100 of the root-mean-square contrast of the image [119]. The
value C = 4.5 × 10−4 comes when considering one of the mitochondrion tomograms used in our
experiments.
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(ii) For mid-range gradients 0 < |ux| < 1, the values for λ1 must decrease to

prevent diffusing across the edge. In the hybrid EED/CED model, λ1 will decrease

monotonically until it suddenly switches from EED to CED where λ1 = α. In the

SED model, λ1 will decrease monotonically to zero. Also, for mid-range gradients,

0 < |ux| < 1, the values for λ2 must decrease to prevent creating artificial edges. In

the hybrid EED/CED model, λ2 = 1 until the model switches sharply from EED

mode to CED mode where λ2 < 1. In the SED model, λ2 decreases gradually.

(iii) For high gradients |ux| → 1, we want the model the assume low values for λ1

(no diffusion across the edge), and large values for λ2 (full diffusion along the edge).

In this case, the hybrid EED/CED will be in CED mode and will assume the correct

values for λ1 and λ2. The SED model will continuously assume the correct values for

λ1 and λ2.

(iv) The above rationale for the 2D case extends naturally to 3D. Also, if a voxel

belongs to a linear structure, µ1 ≈ µ2 À µ3, then (µ1 − µ2) → 0 and consequently

the term exp
(−C2

/
(µ1 − µ2)

2) → 0, making the hard switch between planar and

linear structures unnecessary.

3.4.3 Contour Extraction Using the Level Set Method

Osher and Sethian [278] developed a framework relying on a PDE approach for mod-

eling propagating interfaces. These methods have been applied to recover shapes of

2D and 3D objects from visual data, as shown by Malladi, Sethian and Vemuri [222].

This modeling scheme makes no a priori assumptions about the object’s shape and

starts with an arbitrary function, propagating it in the direction normal to the curve

along its gradient field with a certain speed, to recover shapes in the image.

The level set formulation allows both forward and backward motion of the initial

front through the creation of a higher dimensional function φ (x, t) where the initial
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position of the front is embedded as the zero level set. The evolution of the function

φ (x, t) is then linked to the propagation of the front itself through a time-dependent

initial value problem. Thus, at any time t, the position of the front is given by the

zero level set of the time-dependent level set function φ (Γ (t) = {x |φ (x, t) = 0}).
The evolution equation, or level set equation [323], for φ given in [278] can be written

as follows:

φt + F |∇φ| = 0, given φ (x, 0) . (3.30)

Many implementations [5, 222, 277, 323, 324] of the level set method utilize a zero (or

initial) level set such that φ (x, 0) = ±d (x), where ±d (x) is the signed distance to

Γ (0). This choice of φ allows for both conceptual simplifications and computational

savings [277, section 4.2]. Throughout the evolution of the front, in order to avoid

the formation of shocks, very flat shapes, and/or very sharp shapes, a re-initialization

process is often used periodically to restore a signed distance function. One approach

widely used for re-initialization is to solve the equation

φt = sign (φ0) (1− |∇φ|) , (3.31)

given the function to be re-intialized φ0 and the sign function sign (φ) [277]. The

process of re-initialization, using the PDE-based method above or similar variation,

can be complicated and expensive. There is no simple way to determine how and

when the level set function should be re-initialized to a signed distance function.

Li, Xu, Gui and Fox [210] presented a variational formulation whose propagating

front is an approximate signed distance function yet does not require re-initialization.

The variational energy functional consists of both an internal energy term that forces

the level set function to be kept as an approximate signed distance function, and an

external energy term that drives the zero level set toward the sought object contours
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in the image. The total energy functional is given by

E (φ) = µP (φ) + Eg,λ,ν (φ) . (3.32)

The first term in the sum is the internal energy. It helps prohibit the deviation of φ

from a signed distance function, where µ > 0 is the parameter controlling the effect

of the penalizing the deviation. P (φ) is a metric that characterizes how close φ is to

a signed distance function whose definition follows from Eq. (3.31):

P (φ) =
1

2

∫

Ω

(|∇φ| − 1)2 dx. (3.33)

The second term in the sum of Eq. (3.32) is the external energy term that moves

the zero level curve toward the object boundaries. Given an image u we can define

the following edge indicator function where Gσ is the Gaussian kernel with standard

deviation σ:

g =
1

1 + |∇Gσ ∗ u|2 . (3.34)

With this we can further specify our external energy term:

Eg,λ,ν (φ) = λLg (φ) + νAg (φ) , (3.35)

for terms Lg (φ) =
∫
Ω

gδ (φ) |∇φ|dx and Ag (φ) =
∫
Ω

gH (−φ) dx, where δ (·) is the

univariate Dirac function and H (·) is the Heaviside function, and constants λ > 0

and ν. The energy term Lg(φ) computes the length of the zero level curve of φ while

Ag(φ) is the weighted area on the interior of the zero level set and speeds up the

curve evolution. The coefficient ν serves to control both the speed and direction of

the curve propagation and should be chosen appropriately depending on the relative

location of the initial contour to the object of interest. For an initial contour outside

the object, ν should be a negative value so that the contours may shrink to the object

boundary; whereas, a positive value should be chosen for ν if the initial contour is

inside the object so that the contours might expand to the boundary.
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The use of this energy functional completely eliminates the need for the expensive

re-initialization as the evolution of the level set function is the gradient flow that

minimizes the overall energy functional. The internal energy term maintains the level

set function as an approximate signed distance function while the external energy

term drives the propagation. The evolution equation is determined using calculus of

variations to differentiate E and setting its Gâteaux derivative equal to zero, yielding

the steepest descent process for minimization of the functional E :

∂φ

∂t
= µ

(
∇2φ−∇ ·

( ∇φ

|∇φ|
))

+ λδ (φ)∇ ·
(

g
∇φ

|∇φ|
)

+ νgδ (φ) . (3.36)

We will use this approach to extract the main contours of the mitochondrion structure,

which will facilitate the 3D rendering of the structure.

3.4.4 Numerical Experiments for the Anisotropic Nonlinear
Diffusion and Bilateral Filter Model in Electron To-
mography

After the 3D tomogram of the HeLa cell mitochondrion has been reconstructed, we

apply the algorithm described in section 3.4 for the removal of noise and the enhance-

ment of the structural features13. This step is critical for the posterior segmentation

and extraction of the structure-defining contours. The problem to solve is

ut −∇ · (Dbf · ∇u) = 0 on Ω× [ 0,∞) ,

u (x, 0) = u0 (x) on Ω,

〈Dbf · ∇u,n〉 = 0 on ∂Ω× (0,∞) .

(3.37)

Adopting the following notation for the components of the diffusion tensor:

Dbf = λ1v1 · vT
1 + λ2v2 · vT

2 + λ3v3 · vT
3 =




d11 d12 d13

d21 d22 d23

d31 d32 d33


 , (3.38)

13We refer the reader to chapter 5 for a description of the algorithm to implement this model.
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we can expand Eq. (3.37) and write

ut − ∂x (d11ux + d12uy + d13uz)

− ∂y (d21ux + d22uy + d23uz)

− ∂z (d31ux + d32uy + d33uz) = 0,

(3.39)

for t > 0, with the observed image as initial condition, and homogeneous Neumann

boundary conditions. We can apply the standard explicit finite difference scheme

using central difference to approximate the spatial derivatives, and forward difference

to approximate the time derivative. The condition for stability is given by δt ≤ 1/6

[381]. The update will be

ut+1 = ut + δt [ ∂x (d11ux + d12uy + d13uz)

+ ∂y (d21ux + d22uy + d23uz)

+ ∂z (d31ux + d32uy + d33uz) ] .

(3.40)

Before applying the proposed SED model to a 3D electron tomogram of a mi-

tochondrion, we apply the model to a more familiar set of 2D images below. These

experiments demonstrate the excellent performance of the proposed model, where the

structures of the images have been enhanced while most the noise has been removed.

Figs. 3.4, 3.6 and 3.10 show the noise-free images of Lena, the Clown, and the Baboon

and their corresponding noisy images. We ran the three models EED, CED, and SED

to the points of maximum similarity between the noise-free images and each of their

filtered images. The similarity was measured by the correlation coefficient between

the noise-free image and each of the filtered images, corr (f, u). In Figs. 3.33, 3.34

and 3.35 we can observe that the SED model not only enhances the structures of the

images, but also removes sufficient noise for the filtered images to move very close to

the noise-free images.

Fig. 3.36 shows some results of the SED model applied to the 3D electron tomo-

gram of the HeLa cell mitochondrion. The proposed approach achieves excellent noise
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Figure 3.33: (left to right) Filtered images of Lena by EED and CED,
respectively. The maximum correlation coefficients between the noise-free
image and the filtered images are 0.9621 and 0.9197, respectively. Filtered
image of Lena by SED. The maximum correlation coefficient between the
noise-free image and the filtered image is 0.9703.

Figure 3.34: (left to right) Filtered images of the Clown by EED and CED,
respectively. The maximum correlation coefficients between the noise-free
image and the filtered images are 0.9782 and 0.9613, respectively. Filtered
image of the Clown by SED. The maximum correlation coefficient between
the noise-free image and the filtered image is 0.9817.

reduction while preserving the salient edge features. In order to facilitate extraction

of the structures, we synthetically enhance the contrast by applying the confidence

connected segmentation algorithm [244]. In this context, this simple region-growing

segmentation method produces sufficiently good results for the extraction stage, but

more flexible methods such as the watershed technique [367] or the Chan-Vese [66]

algorithm can easily be substituted. After segmentation, the features are extracted

using the level set approach described in subsection 3.4.3. One significant advantage

of this formulation is the liberty allowed in selecting the initial level set function.
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Figure 3.35: (left to right) Filtered images of the Baboon by EED and CED,
respectively. The maximum correlation coefficients between the noise-free
image and the filtered images are 0.8987 and 0.8757, respectively. Filtered
image of the Baboon by SED. The maximum correlation coefficient between
the noise-free image and the filtered image is 0.9065.

Traditionally, using level set methods requires the initial level set to be a signed dis-

tance function φ0 so that re-initialization can be applied. However, with this need

eliminated, a much simpler initial function may be defined:

φ0(x) =





−η x ∈ Ω0 − ∂Ω0

0 x ∈ ∂Ω0

η Ω− Ω0,

(3.41)

given arbitrary Ω0, a subset in the image domain Ω where ∂Ω0 is the set of points on

the boundary of Ω0, and η > 0. For our implementation η = 4 is selected; however,

most any constant would work. For the purposes here, in Eq. (3.36), we use a Dirac

function that is slightly smoothed. We define the regularized Dirac function δε(x) as

follows

δε(x) =

{
0 |x| > ε
1
2ε

(
1 + cos(πx

ε
)
) |x| ≤ ε,

(3.42)

and utilize ε = 1.5 for our implementation.

In implementing the proposed level set method we carefully selected both our

time-step τ and coefficient µ to be safely within the range required for stability (τµ <

1
4

as explained in [210]), τ = 5 and µ = 0.04. The level set functions were initialized as

the function φ0 defined by Eq. (3.31) with η = 4 using selected regions Ω0. Fig. 3.38
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Figure 3.36: Results of the proposed approach as a slice taken from the 3D
electron tomogram of the HeLa cell mitochondrion. (left) The noisy image.
(right) The filtered image after applying the SED model. We observe the
good denoising capability of the proposed approach along with its excellent
ability of preserving the edges.

shows the successful extraction of both the crista structures and outer membrane

of the mitochondrion image. Identification of the interior structures was conducted

separately from the identification of the outer membrane due to the required opposite

direction of contour evolution for each. In order that the initial contour expand to

identify the inner structures ν was chosen to be −25 and the evolution required 53

iterations, whereas for the second initial contour, used to shrink and identify the outer

membrane, η was chosen to be 10 and the evolution required 38 iterations. These

selections allowed accurate visualization of the boundaries of interest. Note that the

algorithm was run on the image in Fig. 3.37 (left) and the resulting contours have

been displayed on the original electron tomogram image slice. The extracted contours

are visualized in Fig. 3.38. The left panel shows the successful result of extracting

both the outer membrane and the inner structures; in the right panel we show a 3D

rendering of a ‘stack’ consisting of 25 extracted contours.
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Figure 3.37: Results of the proposed approach as a slice taken from the
3D electron tomogram of the HeLa cell mitochondrion. (left) The image
segmented with the ‘confident connected’ segmentation algorithm. (right)
A fragment of the image’s contours over which the structure tensor’s term
λ2v2 · vT

2 was superimposed.

Figure 3.38: (left) Results of extraction of the interior structures and outer
membrane of a mitochondrion in an ET image. Algorithm was applied twice
to the segmented image (Fig. 3.36) using parameters: λ = 5.0, µ = 0.04,
τ = 5.0, ν = −25 for interior initial contour and ν = 10 for outer initial
contour. Final contours were plotted on the original ET image slice. (right)
Fragment of the 3D rendering of the structural contours extracted from the
mitochondrion image.
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3.5 Concluding Remarks

We have presented a multi-stage approach for extracting the mitochondria structures

from electron tomograms. In the initial restoration, or noise reduction phase, we pro-

pose a structure enhancing anisotropic nonlinear diffusion strategy: the local structure

tensor Jbf is formed from the gradient information of a bilaterally smoothed version

of the current image. In order to close gaps in structures caused by imaging limita-

tions, the local structure tensor is further smoothed with a bilateral filter, forming a

smoothed version of the structure tensor, Jbf . The eigenvectors vi, of the smoothed

structure tensor form the basis for the diffusion tensor Dbf , where the eigenvalues

are prescribed so that there is a smooth interpolation, rather than a hard threshold

switching of the diffusion characteristics between image areas of differing structure

properties.

After the noise reduction phase, we synthetically enhance the contrast by applying

the confident-connected segmentation algorithm. Following which, structures are

extracted using a level set formulation which includes a term that drives the level

set function toward a signed distance function. This both simplifies the initialization

of the algorithm and removes the need for re-initialization. The results are very

encouraging and this computational approach is potentially much faster, and is more

robust and unbiased than the hand-tracing of structures.
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Chapter 4

Total Variation-Based Models

4.1 Introduction

Rudin, Osher and Fatemi [314] proposed removing noise from images by minimizing

the total variation (TV) norm of the estimated solution1. They derived a constrained

minimization algorithm as a time-dependent nonlinear PDE, where the constraints

are determined by the noise statistics. They stated that the space of bounded (total)

variation (BV) is the proper class for many basic image processing tasks. Thus, given

a noisy image u0 = f + η, where the true image f has been perturbed by additive

white noise η, the restored image u ≈ f is the solution of

min
u∈BV(Ω)

TV (u) = min
u∈BV (Ω)

∫

Ω

|∇u| dx, (4.1)

subject to the following constraints involving the noise:

1

2

∫

Ω

(u− u0)
2 dx =

1

2
|Ω| σ2,

1

|Ω|
∫

Ω

u0dx =
1

|Ω|
∫

Ω

udx.

(4.2)

The first constraint uses a priori information that the standard deviation of the noise

is σ, while the second constraint assumes that the noise has zero mean2. The TV-

1The TV-based image noise removal model was originally developed in the late 80’s [313] and the
method was used by the U.S. Government.

2It can also be shown that Eqs. (4.1) and (4.2) imply that the noise is normally distributed [64].
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norm does not penalize discontinuities in u, and therefore it allows the recovery of

the edges in the observed image u0.

To solve this minimization problem we would usually solve its Euler-Lagrange

equation (see complete derivation in Appendix C), namely

−∇ ·
( ∇u

|∇u|
)

+ λ (u− u0) = 0, (4.3)

on a closed domain Ω, and subject to homogeneous Neumann boundary conditions

on the boundary ∂Ω. The solution procedure proposed in [314] employs a parabolic

equation with time as an evolution (scale) parameter, or equivalently, the gradient

descent method, i.e.,

ut −∇ ·
( ∇u

|∇u|
)

+ λ (u− u0) = 0, (4.4)

for t > 0, on a closed domain Ω, with the observed image as initial condition, u (x, 0) =

u0 (x), and homogeneous Neumann boundary conditions, 〈g · ∇u,n〉 = 0, on the

boundary ∂Ω. For the parameter λ, they suggested a dynamic value λ (t) estimated

by Rosen’s gradient-projection method, which as t →∞ converges to

λ = − 1

2 |Ω|σ2

∫

Ω

[
|∇u| − ∇uT

0∇u

|∇u|
]

dx. (4.5)

Existence and uniqueness results for this nonlinear PDE have been obtained by Li-

ons, Osher and Rudin [213]. Other successful implementations of this minimization

problem include the second order cone programming [144], convex programming [72],

duality [63], and a fast and exact minimization method based on graph cuts [79, 80].

4.2 Total Variation-Based Models in Image Pro-

cessing

Rudin, Lions and Osher [312] have argued that there is a number of reasons for pre-

ferring TV-based models over their counterparts. TV-based algorithms are relatively
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simple to implement and result in minimal ringing (non-oscillatory) while recovering

sharp edges (noninvasive). In other words, the TV-norm allows piecewise smooth

functions with jumps and is the proper space for the analysis and recovery of discon-

tinuous functions. Also, the TV-based formulations make a priori assumptions about

the noise, and therefore they can be tailored to address the specific image restoration

problem at hand. Furthermore, empirical evidence suggests that ‘the human vision

favors the L1-norm’ [84]. In other words, the TV-based formulations seem to be the

proper approach for restoring piecewise continuous functions from noisy and blurry

signals.

Nonetheless, the Rudin-Osher-Fatemi model, in its original form, presents several

practical challenges [2]. This evolution scheme is not trivial to implement since it is

highly nonlinear and not well-posed [332]. When the scheme converges it does it at

a linear rate3. It can also run into trouble when |∇u| → 0 beyond machine accuracy.

In practice, it is very common to use a slightly modified version of the TV-norm [2]

∫

Ω

√
|∇u|2 + ε dx, (4.6)

where ε is a small positive number which ‘smoothes out the corner’ at |∇u| = 0. The

two other practical (observable) limitations presented by the Rudin-Osher-Fatemi

original model are the loss of contrast [65, 342] and the ‘staircase’ effect, i.e., a strong

preference for piecewise constant patches [221, 228]. The Rudin-Osher-Fatemi model

has been extensively studied and improved upon by many scientists [2, 44, 65, 69,

145, 208, 228, 276, 279, 312, 321, 332, 341, 342, 364, 365]. We will present here only

the works that serve as background for our research. In our opinion, three of the most

relevant improvements to the method were proposed by (i) Marquina and Osher [228],

(ii) Blomgren, Chan and Mulet [44], and (iii) Rudin, Lions and Osher [312].

3The Courant-Friedrichs-Lewy (CFL) condition for the Rudin-Osher-Fatemi model is
δt

/
δx2 6 cF (|∇u|), with c > 0 [332].
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(i) Marquina and Osher [228] proposed a different version of the transient parabolic

equation that helps speed up the convergence of the time-marching scheme4. The new

evolution equation is

ut − |∇u|∇ ·
( ∇u

|∇u|
)

+ |∇u|λGσ ∗ (Gσ ∗ u− u0) = 0, (4.7)

for t > 0, on a closed domain Ω, with the observed image as initial condition, u (x, 0) =

u0 (x), and homogeneous Neumann boundary conditions, 〈g · ∇u,n〉 = 0, on the

boundary ∂Ω, and where Gσ is a blurring operator (Gaussian kernel). This approach

fixes the staircase problem of the original scheme and is used for the removal of both

blur and noise.

(ii) Blomgren, Chan and Mulet [44] introduced a new approach that considers a

regularizing functional of the type
∫ |∇u|p dx, for p ∈ [1, 2]. For an exponent p = 1,

the model admits discontinuous solutions while when p = 2, it presents a strong bias

against discontinuous functions. This approach was studied further in [332] where

the following evolution equation was proposed

ut −∇ · (|∇u|p−2∇u
)

+ λ (u− u0) = 0, (4.8)

for t > 0, on a closed domain Ω, with the observed image as initial condition, u (x, 0) =

u0 (x), and homogeneous Neumann boundary conditions, 〈g · ∇u,n〉 = 0, on the

boundary ∂Ω. The proof of the uniqueness of the solution is given in [183].

Levine, Chen and Stanich [208] and Chen, Levine and Rao [69] proposed a variant

to that of Blomgren, Chan and Mulet [44], where they defined the exponent p based

on the observed data u0. Their model is

min
u∈BV (Ω)∩L2(Ω)

∫

Ω

ϕ (x,∇u) dx +
λ

2

∫

Ω

|u− u0|2 dx,

4The CFL condition for the Marquina-Osher model is δt
/
δx2 6 c, with c > 0 [332].
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where

ϕ (x, r) =

{
1

p(x)
|r|p(x) if |r| 6 γ

|r| − γp(x)−γp(x)

p(x)
if |r| > γ.

Here, γ > 0 is a fixed parameter, and p (x) is based on a smoothed version of the

observed image u0,

p (x) =
1

1 + κ |∇Gσ ∗ u0 (x)|2 ,

where κ is an adjustable parameter, and Gσ is a Gaussian smoothing kernel of width

σ. They showed existence and uniqueness of minimizers for this functional, and

developed a numerical method for computing them based on gradient descent.

Chambolle [63] also touched upon this subject where he combined two functionals
∫ |∇u| and

∫ |∇u|2 as

J (u) =
1

2 ω

∫

|∇u|< ω

|∇u|2 dx +

∫

|∇u|> ω

(
|∇u| − ω

2

)
dx +

∫

Ω

|u− u0|2 dx,

where ω is an adjustable parameter to be chosen. The Euler-Lagrange equation for

this functional resembles that of the models discussed in this section. Schults, Bollt,

Chartrand, Esedoglu and Vixie [321] have more recently revisited the subject and

suggested to minimize the following functional,

J (u) =

∫

Ω

|∇u|p(|∇u|) dx +
λ

2

∫

Ω

|u− u0|q dx,

where q = 1 or 2, for two cases: Case 1, p (x) = P (|∇ (Gσ ∗ u0) (x)|); and Case 2,

p (x) = P (|∇ (Gσ ∗ u) (x)|). They proved existence in both cases, and uniqueness in

the case of q = 2.

(iii) Rudin, Lions and Osher [312] developed TV-based constrained nonlinear

PDEs to restore blurry images which have been further corrupted with multiplicative

noise. In their theoretical results they proved existence and uniqueness of solutions

to these problems. For the pure denoising problem, where the true image has been

83



perturbed by multiplicative noise, u0 = mf , they considered the following constraints

involving the noise

∫

Ω

mdx = |Ω| ,
∫

Ω

(m− 1)2dx = |Ω|σ2. (4.9)

The gradient projection method leads to the evolution equation

ut −∇ ·
( ∇u

|∇u|
)

+ λ1
u2

0

u3
+ λ2

u0

u2
= 0, (4.10)

for t > 0, on a closed domain Ω, with the observed image as initial condition, u (x, 0) =

u0 (x), and homogeneous Neumann boundary conditions, 〈g · ∇u,n〉 = 0, on the

boundary ∂Ω. For the case of images perturbed by blur and multiplicative noise,

u0 = mA ∗ f and u0 = A ∗ f + mf , the two sets of constraints they used are

∫

Ω

(
u0

A ∗ f

)
dx = |Ω| , 1

2

∫

Ω

(
u0

A ∗ f
− 1

)2

dx =
1

2
|Ω|σ2, (a)

∫

Ω

(
u0 − A ∗ f

u

)
dx = 0,

1

2

∫

Ω

(
u0 − A ∗ f

u

)2

dx =
1

2
|Ω| σ2. (b)

(4.11)

In this case, the gradient projection method leads to the following evolution equations

ut −∇ ·
( ∇u

|∇u|
)

+ λ1A ∗
(

u0

(A ∗ u)2

) ( u0

A ∗ u
− 1

)
+

+λ2A ∗
(

u0

(A ∗ u)2

)
= 0, (a)

ut −∇ ·
( ∇u

|∇u|
)

+ λ1

[
A ∗

(
u0 − A ∗ u

u2

)
+

(u0 − A ∗ u)2

u3

]
+

+λ2

[
A ∗

(
1

u

)
+

u0 − A ∗ u

u2

]
= 0, (b)

(4.12)

for t > 0, on a closed domain Ω, with the observed image as initial condition, u (x, 0) =

u0 (x), and homogeneous Neumann boundary conditions, 〈g · ∇u,n〉 = 0, on the

boundary ∂Ω. We will discuss the multiplicative noise models later in this chapter.
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4.2.1 Parameter-Free Adaptive Total Variation-Based Noise
Removal and Edge Strengthening Model

In previous work [31] we implemented a variation of Blomgren, Chan and Mulet’s [44]

version of the Rudin, Osher and Fatemi’s [314] Euler-Lagrange equation as modified

by Marquina and Osher [228],

ut − |∇u|∇ · (Dbf

(|∇u|p−1) · ∇u
)

+ Λ (u− u0) = 0,

on Ω× [ 0,∞) ,

u (x, 0) = u0 (x) , on Ω,

〈Dbf · ∇u,n〉 = 0, on ∂Ω× (0,∞) .

(4.13)

The model can be regarded as an ‘adaptive TV-based model with morphologic con-

vection and anisotropic diffusion.’ We devised a user-independent choosing of all

the parameters in the model, which starts by estimating the unknown noise level.

Given the assumption that the image has been perturbed by additive white noise,

u0 = f + η, and that this noise is independent from the signal, the variance of the

noisy image must to be equal to the sum of the variance of the true image and the

variance of the noise, i.e., var (u0) = var (Gσ ∗ u0)+var (η). Here, the variance of the

(unknown) true image is approximated by the variance of the convolved noisy image

with a Gaussian kernel of width σ = 1. This parameter will be updated at every

iteration which provides a positive effect. (This is discussed later.) In Appendix D

we show, experimentally, the good properties of this very simple approximation.

For the forcing-term’s parameter we implemented a variation of the method sug-

gested in [314]. Instead of integrating (or summing) over the domain Ω, we assume a

pixel-wise parameter as

Λ ≡ |∇u|λ = − 1

2σ2

[
ux (ux − (u0)x) + uy

(
uy − (u0)y

)]
. (4.14)

The dynamic parameter Λ has the following attributes:
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(i) The smaller the value of Λ, the more the diffusion contributed by the forcing

term. Analogously, the larger the value of Λ, the lesser the diffusion contributed by

the forcing term.

(ii) At the beginning of the scale-marching iterations the gradients ux ≈ (u0)x,

and uy ≈ (u0)y, therefore the terms ux − (u0)x and uy − (u0)y are very small, and

the forcing term tends to contribute more to the diffusion process. In areas where ux

and uy are large (i.e., near edges), these values compensate for the small values of

ux − (u0)x and uy − (u0)y.

(iii) As iterations evolve the terms ux − (u0)x and uy − (u0)y get larger. Near

edges, the forcing term prevents diffusion and helps reach convergence.

(iv) As iterations evolve, the approximation to the variance of the noise σ2 gets

smaller, provoking the dynamic parameter Λ to increase, which reduces the diffusion

and helps reach convergence.

The diffusion tensor Dbf

(|∇u|p−1) incorporates the parameter 0 ≤ p ≤ 1, similar

to the approach in [45]. The diffusion tensor becomes

Dbf

(|∇u|p−1) =
[

v1 v2

] [ |∇u|p1−1 0

0 |∇u|p2−1

] [
vT

1

vT
2

]
, (4.15)

where p1 and p2 are the following adaptive parameters

p1 = g
(|∇ubf |2

)
,

p2 =

{
g

(|∇ubf |2
)

if µ1 = µ2

g
(|∇ubf |2

)
+

(
1− g

(|∇ubf |2
))

exp
(−C

/
(µ1 − µ2)

2) else.

(4.16)

The dynamic parameters p1 and p2 have the following attributes:

(i) For every pixel in the image the parameters take values 0 ≤ p1 ≤ 1, and

0 ≤ p2 ≤ 1.

(ii) When p1 = 0 or p2 = 0, the model uses the TV-norm for the diffusion in the

corresponding direction, and when p1 = 1 or p2 = 1, the model uses the L2-norm for

the diffusion in the corresponding direction.
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(iii) When the parameters 0 < p1 < 1 and 0 < p2 < 1, the model interpolates

between both norms.

In Eqs. (4.15) and (4.16), g
(|∇ubf |2

)
=

(
1 + |∇ubf |2

/
λ2

)−1
is the Perona-Malik-type

diffusivity, v1 and v2 are the corresponding eigenvectors to the eigenvalues µ1 ≥ µ2

of the convolved structure tensor J̄bf . The parameter C is set to 1/100 of the root-

mean-square contrast of the image, i.e., the coherence measure (µ1 − µ2)
2.

Due to the high nonlinearity of the TV-based models, to ensure stability, the

required time step is very small. Song [332] has shown that the CFL condition for the

Rudin-Osher-Fatemi model is δt/δx2 6 c |∇u|, with c > 0. He has also shown that

the CFL condition for the Marquina-Osher model is δt/δx2 6 c, with c > 0. As a rule

of thumb, Gilboa [140] has suggested (assuming δx = 1) setting the value of δt = ε/5,

where ε is the regularization constant used in Eq. (4.6). As mentioned in chapter 3,

Weickert, Romeny and Viergever [381] have shown that for explicit discretization

schemes, the stability condition for the Perona-Malik-type models (assuming δx = 1

and ∀s : g (s) 6 1) is δt < 1/2d, with d being the number of dimensions of the

data. Since the explicit discretization schemes used in the TV-based models produce

updates of the following form

ut+1 = ut + δtF
(
ut,∇ut, u0,∇u0, λ

)
, (4.17)

then, in practice, the smaller the time-step, the slower the restoration process. We

can use the aforementioned findings to devise an ‘adaptive time-step’ δt (x, t), that

will not only make the TV-based schemes more stable (smooth), but will also speed

up the restoration process. The proposed adaptive time-step is5

δt (x) =
ε

5
+

(
1

2d
− ε

5

)(
max (|∇u|)− |∇u|

max (|∇u|)
)

, ∀ t, (4.18)

5We are assuming in this case that the image’s dynamic range is (0, 255).
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where, as before, ε is the regularization constant used in Eq. (4.6), and d is the number

of dimensions of the data. The adaptive time-step has the following characteristics:

(i) The size of the time step varies across the image, ε/5 6 δt (x) 6 1/2d at every

iteration.

(ii) In regions with high gradients, |∇u| → max (|∇u|), the time-step δt → ε/5.

This is a desirable feature since we want to preserve the edges.

(iii) In regions with low gradients, |∇u| → 0, the time-step δt → 1/2d. This

is also a desirable feature since we want to smooth the isotropic regions as soon as

possible.

(iv) In regions with moderate gradients, 0 < |∇u| < max (|∇u|), the time step

interpolates linearly between the two extremes6, ε/5 < δt (x) < 1/2d.

4.2.2 Numerical Experiments for the Parameter-Free Adap-
tive Total Variation-Based Noise Removal and Edge
Strengthening Model, Image Processing

The experiment consisted in trying to restore the noise-free image f , by finding the

best approximation u ≈ f , that each restoration model can achieve. We assume that

the noise-free image has been perturbed by additive Gaussian noise, u0 = f + η,

with zero mean and unknown variance. In order to compare the performance of the

proposed model we implemented the two models below using finite differencing, and

a simple performance measure based on the correlation between the noise-free image

and the two filtered images7. Model 1 is the classic Marquina-Osher model from Eq.

6To keep consistency with the experiments in chapter 3, we adopt the upper bound for the
time-step 10−2 6 1/2d.

7We refer the reader to chapter 5 for a description of the algorithms to implement these models.

88



(4.7) with Gσ = I (no blur),

ut − |∇u|∇ ·
( ∇u

|∇u|
)

+ |∇u|λ (u− u0) = 0, on Ω× [ 0,∞) ,

u (x, 0) = u0 (x) , on Ω,

〈g · ∇u,n〉 = 0, on ∂Ω× (0,∞) .

(4.19)

Model 2 is the inhomogeneous version of the proposed model from Eq. (4.13). The

full anisotropic version of Eq. (4.13) is only appropriate when edge strengthing is

sought, and will not be comparable to Model 1. Then,

ut − |∇u| ∇ ·
( ∇u

|∇u|
)

+ Λ (u− u0) = 0, on Ω× [ 0,∞) ,

u (x, 0) = u0 (x) , on Ω,

〈g · ∇u,n〉 = 0, on ∂Ω× (0,∞) .

(4.20)

We set the following parameters for the two models:

Table 4.1: Adopted Parameters in Experiments

Model 1 Model 2

ε = 1/255 ε = 1/255

δt = ε/5 δt = ε
5

+
(

1
2d
− ε

5

) (
max(|∇u|)−|∇u|

max(|∇u|)

)

λ = − 1
2|Ω|σ2

∫
Ω

[
|∇u| − ∇uT

0∇u

|∇u|

]
dx Λ = − 1

2σ2∇uT · (∇u−∇u0)

var (η) = var (u0)− var (Gσ ∗ u0) var (ηt+1) = var (ut)− var (Gσ ∗ ut)

We apply the standard explicit finite difference scheme with central difference to

approximate the spatial derivatives, and forward difference to approximate the time

derivative. Results of the experiment for the Clown are shown in Figs. 4.1, 4.2 and

4.3; results of the experiment for the Baboon are shown in Figs. 4.4, 4.5 and 4.6;

results of the experiment for the Cameraman are shown in Figs. 4.7, 4.8 and 4.9.

In all the cases, we notice that the proposed model provides an improvement in the
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quality of the restoration and a huge speed-up in the time to reach the best possible

restoration. A summary of the comparative results for the three images are shown in

table 4.2.

Table 4.2: Comparative Results of the Experiments

Experiment Model 1 Model 2

The Clown
Iterations = 1779

corr (f, u) = 0.9700
Iterations = 25

corr (f, u) = 0.9736

The Baboon
Iterations = 1296

corr (f, u) = 0.8859
Iterations = 19

corr (f, u) = 0.8965

The Cameraman
Iterations = 1548

corr (f, u) = 0.9647
Iterations = 28

corr (f, u) = 0.9740
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Figure 4.1: (left) Correlation coefficient between the noise-free image of
the Clown and the filtered image of the Clown at each iteration, corr (f, u),
after applying the Marquina-Osher model. (right) Correlation coefficient
between the noise-free image of the Clown and the filtered image of the
Clown at each iteration, corr (f, u), after applying the proposed model. The
maximum value of the correlation coefficient for each model is as follows:
Marquina-Osher, 0.9700, after 1779 iterations; proposed model, 0.9736, after
25 iterations.
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Figure 4.2: (left) Values of the time-step δt across the image after applying
the proposed model for 25 iterations. Larger time-steps are taken in the
isotropic areas of the image (faster update), and smaller time-steps are taken
on and near the edges (slower update). (right) Values of the parameter Λ
across the image after applying the proposed model for 25 iterations. This
parameter is larger on and near edges (less diffusion), and it is smaller in
the isotropic areas of the image (more diffusion).

Figure 4.3: (left to right) Filtered images of the Clown by the Marquina-
Osher model and the proposed model. The maximum correlation coefficients
between the noise-free image and the filtered images, corr (f, u), are 0.9700
and 0.9736, respectively.
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Figure 4.4: (left) Correlation coefficient between the noise-free image of the
Baboon and the filtered image of the Baboon at each iteration, corr (f, u),
after applying the Marquina-Osher model. (right) Correlation coefficient
between the noise-free image of the Baboon and the filtered image of the
Baboon at each iteration, corr (f, u), after applying the proposed model.
The maximum value of the correlation coefficient for each model is as follows:
Marquina-Osher, 0.8859, after 1296 iterations; proposed model, 0.8965, after
19 iterations.

Figure 4.5: (left) Values of the time-step δt across the image after applying
the proposed model for 19 iterations. Larger time-steps are taken in the
isotropic areas of the image (faster update), and smaller time-steps are taken
on and near the edges (slower update). (right) Values of the parameter Λ
across the image after applying the proposed model for 19 iterations. This
parameter is larger on and near edges (less diffusion), and it is smaller in
the homogeneous areas of the image (more diffusion).
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Figure 4.6: (left to right) Filtered images of the Baboon by the Marquina-
Osher model and the proposed model. The maximum correlation coefficients
between the noise-free image and the filtered images, corr (f, u), are 0.8859
and 0.8965, respectively.
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Figure 4.7: (left) Correlation coefficient between the noise-free image of
the Cameraman and the filtered image of the Cameraman at each iteration,
corr (f, u), after applying the Marquina-Osher model. (right) Correlation
coefficient between the noise-free image of the Cameraman and the filtered
image of the Cameraman at each iteration, corr (f, u), after applying the
proposed model. The maximum value of the correlation coefficient for each
model is as follows: Marquina-Osher, 0.9647, after 1548 iterations; proposed
model, 0.9740, after 28 iterations.

93



Figure 4.8: (left) Values of the time-step δt across the image after applying
the proposed model for 28 iterations. Larger time-steps are taken in the
isotropic areas of the image (faster update), and smaller time-steps are taken
on and near the edges (slower update). (right) Values of the parameter Λ
across the image after applying the proposed model for 28 iterations. This
parameter is larger on and near edges (less diffusion), and it is smaller in
the homogeneous areas of the image (more diffusion).

Figure 4.9: (left to right) Filtered images of the Cameraman by the
Marquina-Osher model and the proposed model. The maximum correlation
coefficients between the noise-free image and the filtered images, corr (f, u),
are 0.9647 and 0.9740, respectively.
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4.3 Total Variation-Based Models in Electron To-

mography

To the best of our knowledge, the TV-based models introduced to the field of to-

mographic imaging were applied only during the 3D reconstruction processes. They

were primarily employed for regularizing the severe ill-posedness present in the inverse

problem. None of the applications we have found in the literature were used for the

purpose of removing the noise while preserving edges from the 3D tomogram. Some

of the TV-based models used in tomographic imaging are:

(i) Jonsson, Huang and Chan [179] introduced TV regularization in positron

emission tomography (PET). They modified the standard expectation maximization

(EM) for PET to incorporate the TV regularization which resulted in a robust al-

gorithm independent of the amount of regularization. The authors in [179] argued

that their TV-regularized EM-algorithm is far better that the standard EM-method

when it comes to convergence and enhancement of object edges, better than the stan-

dard EM-method at reconstructing large flat regions, and comparable to the standard

EM-method for smaller constant intensity regions.

(ii) Panin, Zeng and Gullberg [281] proposed a similar approach as above, in

the form of an iterative Bayesian reconstruction where the regularization norm is

included in the one step late-expectation maximization (OSL-EM) algorithm. They

extended the TV-norm minimization constraint to the field of single positron emission

computed tomography (SPECT) image reconstruction with a Poisson noise model.

This TV regularization scheme, when apply to SPECT, provides reconstructed images

that have attractive features, such as the identification of distinguishable sharp edges.

(iii) Persson, Bone and Elmqvist [296] extended the TV-norm formulation from

2D to 3D and incorporated it into an ordered subsets EM algorithm for limited view

95



angle acquisition geometry in gamma camera imaging (ectomography). They called

their algorithm TV3D-EM, and evaluated it using a modeled point spread function

and digital phantoms. The reconstructed images, when compared with those recon-

structed with the 2D filtered back-projection algorithm, show perceived improvement

in quality. The TV3D-EM yielded a reduction in artifacts, caused by the incomplete

angular sampling of a limited view angle system, while the noise level was controlled.

(iv) Kisilev, Zibulevsky and Zeevi [188] incorporated the wavelet transform (WT)

and TV based regularization procedures into the maximum likelihood (ML) frame-

work, embedded into the iterative processes (reconstruction processes) of the EM

algorithm and the conjugate barrier (CB) algorithm for PET. They concluded that

the combination of the CB algorithm with the TV penalty achieves the best contrast

to noise trade-off, and that it improves the contrast and suppresses noise simultane-

ously.

(v) Zhang and Froment [402] developed a Fourier-based tomographic reconstruc-

tion and TV-regularization method from given parallel x-ray projections. Their exper-

iments on the well-known Shepp-Logan head phantom [325], show that this approach

outperforms the following classic reconstruction methods both in terms of PSNR

(an objective mean-square error) and visual quality: direct Fourier method (DFM),

filtered back-projection, and Tikhonov iterative method (TIM).

(vi) Sidky, Kao and Pan [326] developed and investigated an iterative image re-

construction algorithm based on the minimization of the image TV-norm that applies

to both fan-beam and cone-beam computed tomography (CT). This model aims to

reconstruct images from sparse or insufficient data problems that may occur due to

practical issues of CT scanning (including the few-view, limited-angle, and bad-bin

problems). The minimization of the image TV is carried out by the gradient descent

method, and the constraints imposed by the known projection data are incorporated
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by projection on convex sets (POCS) [28]. They demonstrated and validated the

proposed TV algorithm for image reconstruction in various sparse or insufficient data

under ‘ideal’ conditions. Also, they presented preliminary results indicating that the

TV algorithm seems to be effective on sparse data problems in the presence of signal

noise.

(vii) Asaki, Campbell, Chartrand, Powell, Vixie and Wohlberg [14] applied TV

regularization methods to Abel inversion tomography. Their experimental results

showed favorable characteristics of noise suppression and density discontinuity preser-

vation. They also introduced an adaptive TV method that employs a modified discrete

gradient operator acting only apart from data-determined density discontinuities. The

authors is [14] claim that this method provides improved density level preservation

relative to the basic TV method.

We introduced a TV-based model for the reduction of noise and the strengthening

of edges (structures) in cryo-electron tomograms [31, 34]. Our implementation uses

the approach presented in subsection 4.2.1 where we devised a variation of Blomgren,

Chan and Mulet’s [44] version of the Rudin, Osher and Fatemi’s [314] Euler-Lagrange

equation as modified by Marquina and Osher [228]. It provides a user-independent

method for choosing all the parameters in the model, along with an adaptive time-

step that allows faster and more stable image restoration. Some experimental results

are shown in subsection 4.3.1 where we applied the proposed model to the electron

tomogram of a mitochondrion from a HeLa cell.
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4.3.1 Numerical Experiments for the Parameter-Free Adap-
tive Total Variation-Based Noise Removal and Edge
Strengthening Model, Electron Tomography

We applied the parameter-free adaptive TV-based noise removal and edge strength-

ening model, Eq. (4.13), to 2D slices of a 3D electron tomogram of a mitochondrion

from a HeLa cell. The evolution model is as follows8:

ut − |∇u|∇ · (Dbf

(|∇u|p−1) · ∇u
)

+ ΛGσ ∗ (Gσ ∗ u− u0) = 0,

on Ω× [ 0,∞) ,

u (x, 0) = u0 (x) , on Ω,

〈Dbf · ∇u,n〉 = 0, on ∂Ω× (0,∞) .

The diffusion tensor Dbf is given by Eq. (4.15), the adaptive parameters p1 and p2

are defined by Eq. (4.16), and the adaptive time-step δt is described by Eq. (4.18).

Fig. 4.10 shows the noisy 2D slice of a 3D electron tomogram of a mitochondrion

from a HeLa cell, and the corresponding filtered image, after applying the parameter-

free adaptive TV-based noise removal and edge strengthening model. We observe the

good performance of the model at removing the high frequency signal with careful

preservation of the edges.

4.3.2 Homomorphic Total Variation-Based Model

In this subsection we use TV-based methods for the reduction of multiplicative noise

and the enhancement of structures in images from ET. These methods are used prior

to applying image segmentation techniques that facilitate the 3D rendering and subse-

quence analysis of the mitochondrial structure. We design an algorithm based on the

classic TV-based method by Rudin, Osher and Fatemi [314] as modified by Marquina

and Osher [228] within a homomorphic system, and compare it to the TV-based image

8We refer the reader to chapter 5 for a description of the algorithm to implement this model.
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Figure 4.10: (left to right) Noisy 2D slice of a 3D electron tomogram of a
mitochondrion from a HeLa cell, and the filtered 2D slice of a 3D electron to-
mogram of a mitochondrion from a HeLa cell, after applying the parameter-
free adaptive TV-based noise removal and edge strengthening model.

restoration technique by Rudin, Lions and Osher [312] at reducing the multiplicative

noise present in EM imagery. In a homomorphic system, the natural logarithm is

used to transform the multiplicative nature of the degradation into an additive one

and then, the resulting degraded image is processed by using a filter to reduce the

additive noise. An exponential function is then applied to the output of the filter.

We will use an approach similar to the one presented in subsection 2.6.2 for our

‘homomorphic TV-based image denoising technique.’ The equation we are trying to

solve is the low-dose imaging problem, u0 (x) = m (x) f (x), where u0 is the observed

degraded image, f is the true image, and m is the multiplicative noise with unit-mean

following a Gamma (or Log-normal) probability distribution. Applying the natural

logarithmic transform we obtain ū0 (x) = f̄ (x)+ η̄ (x), were η̄ is a random zero-mean

noise process [350] (very close to Gaussian distribution [1, 98, 155]) and f̄ = ln f +µm̄.

The variance and mean of m̄ have been derived in [397] and for our particular case,

L = 61, that results in µm̄ = −0.008219116123108 and σ2
m̄ = 0.016528549339858.

For our second TV-based implementation [312], we solve the equation u0 (x) =
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m (x) f (x) in its original form. In doing so, we try to find u ≈ f by minimizing the

TV of the image, min
u∈BV (Ω)

∫
Ω
|∇u| dx, subject to the following constraints involving

the statistics of the noise
∫

m = 1, ∀u or

∫

Ω

m = |Ω| , (4.21)

∫
(m− 1)2 = σ2

m, ∀u or

∫

Ω

(m− 1)2 = |Ω|σ2
m. (4.22)

Constraint (4.21) is necessary to account for the case of a noise–free image, while

constraint (4.22) is a direct consequence of (4.21) and implies that the standard

deviation of the noise, σm, is known a priori. Thus, the constrained optimization is

subject to the following constraints
∫

u0

u
= 1, (4.23)

1

2

∫ (
u0

f
− 1

)2

=
1

2

∫ ((u0

u

)2

− 1

)
=

σ2
m

2
. (4.24)

The gradient projection method leads to Eq. (4.10) which we rewrite here for conve-

nience

ut −∇ ·
( ∇u

|∇u|
)

+ λ1
u2

0

u3
+ λ2

u0

u2
= 0, (4.25)

for t > 0, on a closed domain Ω, with the observed image as initial condition, u (x, 0) =

u0 (x), and homogeneous Neumann boundary conditions, 〈g · ∇u,n〉 = 0, on the

boundary ∂Ω. We now have two Lagrange multipliers, λ1 and λ2, which can be

computed by requiring

∂

∂t

∫
u0

u
= −

∫
u0

u2
ut = 0, ∀u

or
∂

∂t

∫

Ω

(u0

u

)
dx =

∫

Ω

(u0

u2
ut

)
dx = 0,

(4.26)

∂

∂t

∫ ((u0

u

)2

− 1

)
= −

∫
u2

0

u3
ut = 0, ∀u

or
∂

∂t

∫

Ω

((
f

u

)2

− 1

)
dx =

∫

Ω

(
u2

0

u3
ut

)
dx = 0.

(4.27)
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Eqs. (4.26) and (4.27), together with (4.25), lead to two algebraic equations for the

two unknowns, λ1 and λ2, and the resulting Gram determinant is nonzero [312]. (See

Appendix E for the derivation of λ1 and λ2.)

4.3.3 Numerical Experiments for the Homomorphic Total
Variation-Based Model

For the homomorphic TV-based model we implement the following system9:

ut − |∇u|∇ ·
( ∇u

|∇u|
)

+ ΛGσ ∗ (Gσ ∗ u− u0) = 0, on Ω× [ 0,∞) ,

u (x, 0) = u0 (x) , on Ω,

〈g · ∇u,n〉 = 0, on ∂Ω× (0,∞) .

The parameter Λ is the one we suggested in Eq. (4.14) and for the standard deviation

of the noise, ση̄, we used σm̄, since var (η̄) = var (m̄− µm̄) = var (m̄). We need to

correct the output u to account for the applied shift f̄ = ln f + µm̄, and then apply

the exponential transformation to obtain the final approximation to the true image.

For the TV-based multiplicative noise removal case we implement the Rudin-

Lions-Osher model [312]

ut −∇ ·
( ∇u

|∇u|
)

+ λ1
u2

0

u3
+ λ2

u0

u2
= 0, on Ω× [ 0,∞) ,

u (x, 0) = u0 (x) , on Ω,

〈g · ∇u,n〉 = 0, on ∂Ω× (0,∞) .

For the parameters λ1 and λ2 we solved the two equations with two unknowns and

obtained (see Appendix E)

λ1 (t) =
1

D (x)

(∫

Ω

u2
0

u4
dx

∫

Ω

u2
0

u3
B (x) dx−

∫

Ω

u3
0

u5
dx

∫

Ω

u0

u2
B (x) dx

)
,

λ2 (t) =
1

D (x)

(∫

Ω

u4
0

u6
dx

∫

Ω

u0

u2
B (xdx) dx−

∫

Ω

u3
0

u5
dx

∫

Ω

u2
0

u3
B (x) dx

)
,

9We refer the reader to chapter 5 for a description of the algorithm to implement this model.
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where

D (x) =

∫

Ω

u4
0

u6
dx

∫

Ω

u2
0

u4
dx−

∫

Ω

u3
0

u5
dx

∫

Ω

u3
0

u5
dx, B (x) = ∇ ·

( ∇u

|∇u|
)

.

Fig. 4.11 shows a 2D slice of a 3D electron tomogram of a mitochondrion obtained

by low-dose imaging. In this case, the dynamic range of the image is very narrow and

the image is predominantly perturbed by multiplicative noise. The resulting images

after applying the two techniques we described above are shown in Figs. 4.12 and

4.13. We can observe that both images are better suited for automatic segmentation.
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Figure 4.11: (left to right) Low-dose noisy 2D slice of a 3D electron tomo-
gram of a mitochondrion and the histogram plot of its dynamic range. The
dynamic range is extremely narrow as a consequence on the low contrast
between ice and specimen.
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Figure 4.12: (left) Output image obtained by applying the homomorphic
TV-based denoising after gamma correction. We can observe that the im-
age is better suited for automatic segmentation. (right) Segmented image
using a threshold algorithm that allows the extraction of the mitochondrion
structure.

Figure 4.13: (left) Output image obtained by applying the TV-based de-
noising method for multiplicative noise after gamma correction. We can
observe that the image is better suited for automatic segmentation. (right)
Segmented image that allows the extraction of the mitochondrion structure.
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4.4 Concluding Remarks

We developed a fully adaptive TV-based model with morphologic convection and

anisotropic diffusion, and devised a user-independent choosing of all the parameters

in the model. We start by estimating the unknown noise level via a simple approxi-

mation that uses convolution with a Gaussian kernel. This parameter is updated at

each iteration and as the noise is being removed, it reduces the diffusion and helps

reach convergence. For this model, we implemented a pixel-wise parameter in the

forcing-term that allows more diffusion in homogeneous areas and restricts the diffu-

sion in areas with higher probability of belonging to edges. This parameter also allows

more diffusion in the early stages of the scale-marching process and less diffusion as

iterations evolve. These are desirable attributes in image noise removal applications.

For the anisotropic diffusion process, the diffusion tensor that we implemented not

only steers the diffusion in such a way that the eigenvectors prescribe the diffusion

directions and the corresponding eigenvalues determine the amount of diffusion along

these directions, but also adapts itself to the underlying structure of the image, by

applying a range of diffusion processes in each direction. The proposed model applies

diffusion processes consistent with either the TV-norm or the L2-norm, or an inter-

polation between the two norms. Finally, we implemented an adaptive time-step that

helps with the stability and the speed of TV-based restoration process. The size of

the time-step varies across the image at each iteration. Also, the adaptive time-step is

smaller in regions with high gradients and is larger in regions with low gradients. Both

of these are desirable features for preserving the edges and for smoothing isotropic

regions, respectively.

In addition to the aforementioned TV-based model, we designed a homomorphic

TV-based algorithm for the reduction of the multiplicative noise present in low-dose
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EM imagery. In a homomorphic system, the natural logarithm is used to transform

the multiplicative nature of the degradation into an additive one and then, the re-

sulting degraded image is processed by using a filter to reduce the additive noise. An

exponential function is then applied to the output of the filter. In the implementation

of this model we employed some of the adaptive parameters we devised in the first

part of the chapter. For the purpose of performance comparison, we implemented

a TV-based algorithm that was originally designed for the removal of multiplicative

noise. Ours is the first implementation of this method within the context of EM

tomography.
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Chapter 5

Implementation of the Numerical
Solution

5.1 Introduction

Digital images are given on discrete (regular) grids. This lends itself for discretizing

the PDEs to obtain numerical schemes that can be solved on a computer (see Fig. 5.1).

Because of their favorable stability and efficiency properties, semi-implicit schemes

have been the methods of choice for the scale discretization [23, 24, 62, 88, 156,

157, 158, 182, 193, 247, 248, 302, 376, 381]. As for the space discretization, the

most popular choices are finite difference [62, 376, 381] and finite element methods

[23, 24, 88, 182, 302, 376, 381] (in that order of preference). In previous work [32]

we chose to discretize the space using finite elements, because of the ability to use

adaptive mesh in the numerical solutions (see Figs. 5.2, 5.3, 5.4, and 5.5). In our

implementation the remeshing approach based on the L2-norm was employed, so that

the nodes are placed following the edges of the image which allows very good edge

preservation. Even though the employment of adaptive grid proved to be a very

efficient approach (considerably fewer DOF are necessary to produce similar results

to the regular grid case), our decision to work with 3D electron tomograms made us

revise our approach in favor of more simple finite difference schemes.
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Figure 5.1: Digital images are given on discrete (regular) grids. This lends
itself for discretizing the PDEs to obtain numerical schemes that can be
solved on a computer. The figure shows a zoomed-in detail of an image at
the pixel level that was superimposed with a finite element mesh of triangular
elements. Each node of an element has one DOF, the intensity value of that
pixel.

Figure 5.2: Zoomed-in detail of the filtered image of Lena with the final
adaptive mesh superimposed.
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Figure 5.3: (left to right) 2D slice of a brain MRI and the final adaptive
mesh.

Figure 5.4: (left to right) Filtered image of the Statute of Liberty and the
final adaptive mesh.

Figure 5.5: (left to right) Filtered version of the synthetic geometric image
and the final adaptive mesh.
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5.2 Algorithms for the Anisotropic Nonlinear Dif-

fusion Models

5.2.1 Perona-Malik Inhomogeneous Nonlinear Diffusion Model

The classic Perona-Malik model, Eq. (3.12), is given by

ut −∇ · (g (|∇u|2) · ∇u
)

= 0, on Ω× [ 0,∞) ,

u (x, 0) = u0 (x) , on Ω,

〈g∇u,n〉 = 0, on ∂Ω× (0,∞) ,

g
(|∇u|2) =

1

1 + |∇u|2/λ2
, λ = 10−2.

The algorithm to implement the Perona-Malik model is as follows:

N ⇐ 50 % number of iterations

λ ⇐ 10−2
% contrast parameter

δt ⇐ 10−2
% time-step

u (x, 0) ⇐ u0 (x), on Ω % set initial condition

c1 ⇐ corr (u, f) % performance measure

c̄1 ⇐ corr (u, u0) % correlation measure

for i = 1 to N do

∇u ⇐ [ux uy]
T

% estimate gradients

|∇u| ⇐ √
u2

x + u2
y % magnitude of the gradients

g ⇐ 1

1+|∇u|2/λ2
% diffusivity function

〈g · ∇u,n〉 ⇐ 0, on ∂Ω % set boundary conditions

φ ⇐ ∇ · (g · ∇u) % diffusion term

u ⇐ u + δtφ % evolve the image

ci+1 ⇐ corr (u, f) % update performance measure

c̄i+1 ⇐ corr (u, u0) % update correlation measure

ĉi+1 ⇐ ∂2c̄i+1 % stopping criterion
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if ∂ĉi+1 ≤ 0 then

v = u % save best image if condition is met

end if

end for

5.2.2 Catté, Lions, Morel and Coll Inhomogeneous Nonlinear
Diffusion Model

The Perona-Malik model as modified by Catté, Lions, Morel and Coll, Eq. (3.13), is

given by
ut −∇ · (g (|∇uσ|2

) · ∇u
)

= 0, on Ω× [ 0,∞) ,

u (x, 0) = u0 (x) , on Ω,

〈g · ∇u,n〉 = 0, on ∂Ω× (0,∞) ,

g
(|∇uσ|2

)
=

1

1 + |∇uσ|2
/
λ2

, λ = 10−2,

uσ = Gσ ∗ u, σ = 1.

The algorithm to implement the Perona-Malik model as modified by Catté, Lions,

Morel and Coll is as follows:

N ⇐ 50 % number of iterations

λ ⇐ 10−2
% contrast parameter

δt ⇐ 10−2
% time-step

σ ⇐ 1 % Gaussian kernel’s width

u (x, 0) ⇐ u0 (x), on Ω % set initial condition

c1 ⇐ corr (u, f) % performance measure

c̄1 ⇐ corr (u, u0) % correlation measure

for i = 1 to N do

uσ ⇐ Gσ ∗ u % convolve image with Gaussian kernel
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∇u ⇐ [ux uy]
T

% estimate gradients

∇uσ ⇐
[
(uσ)x (uσ)y

]T

% estimate gradients

|∇uσ| ⇐
√

(uσ)2
x + (uσ)2

y % magnitude of the gradients

g ⇐ 1

1+|∇uσ|2/λ2
% diffusivity function

〈g · ∇u,n〉 ⇐ 0, on ∂Ω % set boundary conditions

φ ⇐ ∇ · (g · ∇u) % diffusion term

u ⇐ u + δtφ % evolve the image

ci+1 ⇐ corr (u, f) % update performance measure

c̄i+1 ⇐ corr (u, u0) % update correlation measure

ĉi+1 ⇐ ∂2c̄i+1 % stopping criterion

if ∂ĉi+1 ≤ 0 then

v = u % save best image if condition is met

end if

end for

5.2.3 Anisotropic Nonlinear Diffusion and Bilateral Filter
Model

The proposed model (Perona-Malik model as modified by Bazán and Blomgren),

Eq. (3.14), is given by

ut −∇ · (g (|∇ubf |2
) · ∇u

)
= 0, on Ω× [ 0,∞) ,

u (x, 0) = u0 (x) , on Ω,

〈g · ∇u,n〉 = 0, on ∂Ω× (0,∞) ,

g
(|∇u|2) =

1

1 + |∇ubf |2
/
λ2

, λ = 10−2,

ubf = Gbf ∗ u, σd = 3, σr = 10−2.

The algorithm to implement the proposed model (Perona-Malik model as modified
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by Bazán and Blomgren) is as follows:

N ⇐ 50 % number of iterations

λ ⇐ 10−2
% contrast parameter

δt ⇐ 10−2
% time-step

σd ⇐ 3 % domain Gaussian kernel’s width

σr ⇐ 10−2
% range Gaussian kernel’s width

u (x, 0) ⇐ u0 (x), on Ω % set initial condition

c1 ⇐ corr (u, f) % performance measure

c̄1 ⇐ corr (u, u0) % correlation measure

for i = 1 to N do

ubf ⇐ Gbf ∗ u % convolve image with bilateral filter kernel

∇u ⇐ [ux uy]
T

% estimate gradients

∇ubf ⇐
[
(ubf )x (ubf )y

]T

% estimate gradients

|∇ubf | ⇐
√

(ubf )
2
x + (ubf )

2
y % magnitude of the gradients

g ⇐ 1

1+|∇ubf |2/λ2
% diffusivity function

〈g · ∇u,n〉 ⇐ 0, on ∂Ω % set boundary conditions

φ ⇐ ∇ · (g · ∇u) % diffusion term

u ⇐ u + δtφ % evolve the image

ci+1 ⇐ corr (u, f) % update performance measure

c̄i+1 ⇐ corr (u, u0) % update correlation measure

ĉi+1 ⇐ ∂2c̄i+1 % stopping criterion

if ∂ĉi+1 ≤ 0 then

v = u % save best image if condition is met

end if

end for
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5.2.4 Structure Enhancing Anisotropic Nonlinear Diffusion
Model

The proposed SED model, Eq. (3.37), is given by

ut −∇ · (Dbf · ∇u) = 0, on Ω× [ 0,∞) ,

u (x, 0) = u0 (x) , on Ω,

〈Dbf · ∇u,n〉 = 0 on ∂Ω× (0,∞) .

The algorithm to implement the proposed SED model is as follows:

δt ⇐ 1/6 % time-step

σd ⇐ 1 % domain Gaussian kernel’s width

σr ⇐ 10−2
% range Gaussian kernel’s width

σ̄d ⇐ 2 % orientation Gaussian kernel’s width

σ̄r ⇐ 10−2
% magnitude Gaussian kernel’s width

u (x, 0) ⇐ u0 (x), on Ω % set initial condition

c̄1 ⇐ corr (u, u0) % correlation measure

repeat

ubf ⇐ Gbf ∗ u % convolve image with bilateral filter kernel

∇u ⇐ [ux uy uz]
T

% estimate gradients

∇ubf ⇐
[
(ubf )x (ubf )y (ubf )z

]T

% estimate gradients

|∇ubf | ⇐
√

(ubf )
2
x + (ubf )

2
y + (ubf )

2
z % magnitude of the gradients

Jbf ⇐ ∇ubf · ∇uT
bf % structure tensor

J̄bf ⇐ Ḡbf ∗ Jbf % convolve structure tensor with bilateral filter

vj, µj ⇐ eigen
(
J̄bf

)
, j = 1, 2, 3 % eigenvectors and eigenvalues

λ ⇐ prctile(|∇ubf |) % contrast parameter

g ⇐ 1

1+|∇ubf |2/λ2
% diffusivity function

C2 ⇐ sqtm(µ1, µ2) % coherence parameter

C3 ⇐ sqtm(µ1, µ3) % coherence parameter
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λ1 ⇐ g % prescribe eigenvalue

λ2 ⇐ g + (1− g) exp
(
− C2

(µ1−µ2)2

)
% prescribe eigenvalue

λ3 ⇐ g + (1− g) exp
(
− C3

(µ1−µ3)2

)
% prescribe eigenvalue

Dbf ⇐ [v1 v2 v3] diag (λ1, λ2, λ3) [v1 v2 v3]
T

% form diffusion tensor

〈Dbf · ∇u,n〉 ⇐ 0, on ∂Ω % set boundary conditions

φ = ∇ · (Dbf · ∇u) % diffusion term

u ⇐ u + δtφ % evolve the image

c̄i+1 ⇐ corr (u, u0) % update correlation measure

ĉi+1 ⇐ ∂2c̄i+1 % stopping criterion

until ∂ĉi+1 ≤ 0

5.3 Algorithms for the Total Variation-Based Mod-

els

5.3.1 Marquina-Osher Total Variation-Based Model

The classic Marquina-Osher TV-based model used in our experiment, Eq. (4.19), is

given by

ut − |∇u|∇ ·
( ∇u

|∇u|
)

+ |∇u|λ (u− u0) = 0, on Ω× [ 0,∞) ,

u (x, 0) = u0 (x) , on Ω,

〈g · ∇u,n〉 = 0, on ∂Ω× (0,∞) .

The algorithm to implement the classic Marquina-Osher is as follows:

N ⇐ 2000 % number of iterations

ε ⇐ 1/255 % regularization constant

δt ⇐ ε/5 % time-step

σ ⇐ 1 % Gaussian kernel’s width
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u (x, 0) ⇐ u0 (x), on Ω % set initial condition

∇u0 ⇐
[
(u0)x (u0)y

]T

% estimate gradients

uσ = Gσ ∗ u % convolve image with Gaussian kernel

σ2 = var (u)− var (uσ) % estimate variance of the noise

c1 ⇐ corr (u, f) % performance measure

c̄1 ⇐ corr (u, u0) % correlation measure

for i = 1 to N do

∇u ⇐ [ux uy]
T

% estimate gradients

|∇u| ⇐ √
u2

x + u2
y % magnitude of the gradients

g ⇐ 1√
u2

x+u2
y+ε

% diffusivity function

〈g · ∇u,n〉 ⇐ 0, on ∂Ω % set boundary conditions

λ = − 1
2|Ω|σ2

∫
Ω

[
|∇u| − ∇uT

0∇u

|∇u|

]
dx % forcing term parameter

φ = |∇u| (∇ · (g · ∇u)− λ (u− u0)) % diffusion term

u ⇐ u + δtφ % evolve the image

ci+1 ⇐ corr (u, f) % update performance measure

c̄i+1 ⇐ corr (u, u0) % update correlation measure

ĉi+1 ⇐ ∂2c̄i+1 % stopping criterion

if ∂ĉi+1 ≤ 0 then

v = u % save best image if condition is met

end if

end for
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5.3.2 Parameter-Free Adaptive Total Variation-Based Noise
Removal and Edge Strengthening Model, Image Pro-
cessing

The parameter-free adaptive TV-based noise removal and edge strengthening model

used in our experiment, Eq. (4.20), is given by

ut − |∇u| ∇ ·
( ∇u

|∇u|
)

+ Λ (u− u0) = 0, on Ω× [ 0,∞) ,

u (x, 0) = u0 (x) , on Ω,

〈g · ∇u,n〉 = 0, on ∂Ω× (0,∞) .

The algorithm to implement the parameter-free adaptive TV-based noise removal and

edge strengthening model is as follows:

N ⇐ 100 % number of iterations

ε ⇐ 1/255 % regularization parameter

σ ⇐ 1 % Gaussian kernel’s width

d ⇐ 2 % dimensionality of problem

u (x, 0) ⇐ u0 (x), on Ω % set initial condition

∇u0 ⇐
[
(u0)x (u0)y

]T

% estimate gradients

c1 ⇐ corr (u, f) % performance measure

c̄1 ⇐ corr (u, u0) % correlation measure

for i = 1 to N do

uσ = Gσ ∗ u % convolve image with Gaussian kernel

σ2 = var (u)− var (uσ) % estimate variance of the noise

∇u ⇐ [ux uy]
T

% estimate gradients

|∇u| ⇐ √
u2

x + u2
y % magnitude of the gradients

g ⇐ 1√
u2

x+u2
y+ε

% diffusivity function

〈g · ∇u,n〉 ⇐ 0, on ∂Ω % set boundary conditions
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Λ = − 1
2σ2

[
ux (ux − (u0)x) + uy

(
uy − (u0)y

)]
% forcing term parameter

φ = |∇u|∇ · (g · ∇u)− Λ (u− u0) % diffusion term

δt (x) = ε
5

+
(

1
2d
− ε

5

) (
max(|∇u|)−|∇u|

max(|∇u|)

)
% time-step

u ⇐ u + δtφ % evolve the image

ci+1 ⇐ corr (u, f) % update performance measure

c̄i+1 ⇐ corr (u, u0) % update correlation measure

ĉi+1 ⇐ ∂2c̄i+1 % stopping criterion

if ∂ĉi+1 ≤ 0 then

v = u % save best image if condition is met

end if

end for

5.3.3 Parameter-Free Adaptive Total Variation-Based Noise
Removal and Edge Strengthening Model, Electron To-
mography

The parameter-free adaptive TV-based noise removal and edge strengthening model

used in our experiment, Eq. (4.13), is given by

ut − |∇u|∇ · (Dbf

(|∇u|p−1) · ∇u
)

+ ΛGσ ∗ (Gσ ∗ u− u0) = 0,

on Ω× [ 0,∞) ,

u (x, 0) = u0 (x) , on Ω,

〈Dbf · ∇u,n〉 = 0, on ∂Ω× (0,∞) .

The algorithm to implement the parameter-free adaptive TV-based noise removal and

edge strengthening model is as follows:

ε ⇐ 1/255 % regularization parameter

σ ⇐ 1 % Gaussian kernel’s width
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σd ⇐ 1 % domain Gaussian kernel’s width

σr ⇐ 10−2
% range Gaussian kernel’s width

σ̄d ⇐ 2 % orientation Gaussian kernel’s width

σ̄r ⇐ 10−2
% magnitude Gaussian kernel’s width

d ⇐ 2 % dimensionality of problem

u (x, 0) ⇐ u0 (x), on Ω % set initial condition

∇u0 ⇐
[
(u0)x (u0)y

]T

% estimate gradients

c̄1 ⇐ corr (u, u0) % correlation measure

repeat

uσ = Gσ ∗ u % convolve image with Gaussian kernel

σ2 = var (u)− var (uσ) % estimate variance of the noise

ubf = Gbf ∗ u % convolve image with bilateral filter kernel

∇ubf ⇐
[
(ubf )x (ubf )y

]T

% estimate gradients

∇u ⇐ [ux uy]
T

% estimate gradients

|∇u| ⇐ √
u2

x + u2
y % magnitude of the gradients

Jbf = ∇ubf · ∇uT
bf % structure tensor

J̄bf = Ḡbf ∗ Jbf % convolve structure tensor with bilateral filter

vj, µj ⇐ eigen
(
J̄bf

)
, j = 1, 2, 3 % eigenvectors and eigenvalues

λ ⇐ prctile(|∇ubf |) % contrast parameter

g ⇐ 1

1+|∇ubf |2
/

λ2
% diffusivity function

C ⇐ sqtm(µ1, µ2) % coherence parameter

p1 ⇐ g % mode switch parameter

p2 ⇐ g + (1− g) exp
(
− C

(µ1−µ2)2

)
% mode switch parameter

λ1 = |∇u|p1−1 and λ2 = |∇u|p2−1
% prescribe eigenvectors

Dbf ⇐ [v1 v2 v3] diag (λ1, λ2, λ3) [v1 v2 v3]
T

% form diffusion tensor

〈Dbf · ∇u,n〉 ⇐ 0, on ∂Ω % set boundary conditions
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Λ ⇐ − 1
2σ2

[
ux (ux − (u0)x) + uy

(
uy − (u0)y

)]
% forcing term parameter

φ ⇐ |∇u|∇ · (Dbf · ∇u)− ΛGσ ∗ (Gσ ∗ u− u0) % diffusion term

δt (x) = ε
5

+
(

1
2d
− ε

5

) (
max(|∇u|)−|∇u|

max(|∇u|)

)
% time-step

u ⇐ u + δtφ % evolve the image

c̄i+1 ⇐ corr (u, u0) % update correlation measure

ĉi+1 ⇐ ∂2c̄i+1 % stopping criterion

until ∂ĉi+1 ≤ 0

5.3.4 Homomorphic Total Variation-Based Model

The homomorphic TV-based model used in our experiment is given by

ut − |∇u|∇ ·
( ∇u

|∇u|
)

+ ΛGσ ∗ (Gσ ∗ u− u0) = 0, on Ω× [ 0,∞) ,

u (x, 0) = u0 (x) , on Ω,

〈g · ∇u,n〉 = 0, on ∂Ω× (0,∞) .

The algorithm to implement the homomorphic TV-based model is as follows:

ε ⇐ 1/255 % regularization parameter

σ ⇐ 1 % Gaussian kernel’s width

d ⇐ 2 % dimensionality of problem

L = 61 % number of looks

γEM = 0.577215664901 % Euler-Mascheroni constant

µm̄ = −γEM − ln (L) +
L−1∑
k=1

1
k

% noise mean

σ2
m̄ = π2

6
−

L−1∑
k=1

1
k2 % noise variance

u0 = ln (u0 + 1) + µm̄ % logarithmic transform

u (x, 0) ⇐ u0 (x), on Ω % set initial condition

∇u0 ⇐
[
(u0)x (u0)y

]T

% estimate gradients
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c̄1 ⇐ corr (u, u0) % correlation measure

repeat

∇u ⇐ [ux uy]
T

% estimate gradients

|∇u| ⇐ √
u2

x + u2
y % magnitude of the gradients

g ⇐ 1√
u2

x+u2
y+ε

% diffusivity function

〈g · ∇u,n〉 ⇐ 0, on ∂Ω % set boundary conditions

Λ = − 1
2σ2

m̄

[
ux (ux − (u0)x) + uy

(
uy − (u0)y

)]
% forcing term parameter

φ = |∇u|∇ · (g · ∇u)− ΛGσ ∗ (Gσ ∗ u− u0) % diffusion term

δt (x) = ε
5

+
(

1
2d
− ε

5

) (
max(|∇u|)−|∇u|

max(|∇u|)

)
% time-step

u ⇐ u + δtφ % evolve the image

c̄i+1 ⇐ corr (u, u0) % update correlation measure

ĉi+1 ⇐ ∂2c̄i+1 % stopping criterion

until ∂ĉi+1 ≤ 0

u = exp (u− µm̄)− 1; % exponential transform

5.3.5 Rudin-Lions-Osher Total Variation-Based Model

The Rudin-Lions-Osher TV-based model used in our experiment is given by

ut −∇ ·
( ∇u

|∇u|
)

+ λ1
u2

0

u3
+ λ2

u0

u2
= 0, on Ω× [ 0,∞) ,

u (x, 0) = u0 (x) , on Ω,

〈g · ∇u,n〉 = 0, on ∂Ω× (0,∞) .

The algorithm to implement the Rudin-Lions-Osher TV-based model is as follows:

ε ⇐ 1/255 % regularization parameter

σ ⇐ 1 % Gaussian kernel’s width

δt ⇐ ε/5 % time-step
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u (x, 0) ⇐ u0 (x), on Ω % set initial condition

∇u0 ⇐
[
(u0)x (u0)y

]T

% estimate gradients

c̄1 ⇐ corr (u, u0) % correlation measure

repeat

∇u ⇐ [ux uy]
T

% estimate gradients

|∇u| ⇐ √
u2

x + u2
y % magnitude of the gradients

g ⇐ 1√
u2

x+u2
y+ε

% diffusivity function

〈g · ∇u,n〉 ⇐ 0, on ∂Ω % set boundary conditions

D =
∫

Ω

u4
0

u6 dx
∫

Ω

u2
0

u4 dx−
∫
Ω

u3
0

u5 dx
∫
Ω

u3
0

u5 dx % parameter in Lagrange multiplier

B = ∇ · (g · ∇u) % parameter in Lagrange multiplier

λ1 (t) = 1
D

(∫
Ω

u2
0

u4 dx
∫
Ω

u2
0

u3 Bdx− ∫
Ω

u3
0

u5 dx
∫
Ω

u0

u2 Bdx
)

% Lagrange multiplier

λ2 (t) = 1
D)

(∫
Ω

u4
0

u6 dx
∫

Ω
u0

u2 Bdx− ∫
Ω

u3
0

u5 dx
∫

Ω

u2
0

u3 Bdx
)

% Lagrange multiplier

φ = B + λ1
u2
0

u3 + λ2
u0

u2 % diffusion term

u ⇐ u + δtφ % evolve the image

c̄i+1 ⇐ corr (u, u0) % update correlation measure

ĉi+1 ⇐ ∂2c̄i+1 % stopping criterion

until ∂ĉi+1 ≤ 0

5.4 Concluding Remarks

The processing of 3D images from electron tomogram is computationally very ex-

pensive. To cope with the high cost we implemented simple algorithms that can be

easily run in parallel. Most of the parallel implementations of these simple numerical

schemes were done using the new Parallel Computing ToolboxTM from MATLAB R©.

The tool proved to be adequate for performing this type of computation.
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Appendix A

Mitochondria Disorders

Mitochondria disorders may manifest at any age [206, 207]. Nevertheless, nuclear

DNA abnormalities are more common in childhood, while mtDNA abnormalities usu-

ally appear in late childhood or adult life. Some mitochondria disorders only affect

a single organ, but most of them involve multiple organ systems and patients ex-

hibit a cluster of clinical features that fall into a discrete clinical syndrome [90, 258].

Table A.1 shows some of the clinical syndromes of mitochondria disorders1.

Table A.1: Clinical Syndromes of Mitochondria Disorders

Disorder Primary Features Additional Features

Chronic progressive external
ophthalmoplegia (CPEO)

– External ophthalmoplegia
– Bilateral ptosis

– Mild proximal myopathy

Kearns-Sayre syndrome
(KSS)

– PEO onset before age 20
years
– Pigmentary retinopathy
– One of the following: CSF
protein greater than 1g/L,
cerebellar ataxia, heart block

– Bilateral deafness
– Myopathy
– Dysphagia
– Diabetes mellitus
– Hypoparathyroidism
– Dementia

Pearson syndrome – Sideroblastic anemia of
childhood
– Pancytopenia
– Exocrine pancreatic failure

– Renal tubular defects

(table continues)

1GeneTests: Medical Genetics Information Resource (database online). Copyright, University of
Washington, Seattle. 1993-2008. Available at http://www.genetests.org. Accessed 20080429.
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Table A.1 (continued)

Disorder Primary Features Additional Features

Infantile myopathy and lactic
acidosis (fatal and non-fatal
forms)

– Hypotonia in the first year
of life
– Feeding and respiratory dif-
ficulties

– Fatal form may be asso-
ciated with a cardiomyopa-
thy and/or the Toni-Fanconi-
Debre syndrome

Leigh syndrome (LS) – Subacute relapsing en-
cephalopathy
– Cerebellar and brain-stem
signs
– Infantile onset

– Basal ganglia lucencies
– Maternal history of neu-
rologic disease or Leigh syn-
drome

Neurogenic weakness with
ataxia and retinitis pigmen-
tosa (NARP)

– Late-childhood or adult-
onset peripheral neuropathy
– Ataxia
– Pigmentary retinopathy

– Basal ganglia lucencies
– Abnormal electroretino-
gram
– Sensorimotor neuropathy

mitochondria encephalomy-
opathy with lactic acido-
sis and stroke-like episodes
(MELAS)

– Stroke-like episodes before
age 40 years
– Seizures and/or dementia
– Ragged-red fibers and/or
lactic acidosis

– Diabetes mellitus
– Cardiomyopathy (initially
hypertrophic; later dilated)
– Bilateral deafness
– Pigmentary retinopathy
– Cerebellar ataxia

Myoclonic epilepsy with
ragged-red fibers (MERRF)

– Myoclonus
– Seizures
– Cerebellar ataxia
– Myopathy

– Dementia
– Optic atrophy
– Bilateral deafness
– Peripheral neuropathy
– Spasticity
– Multiple lipomata

Leber hereditary optic neu-
ropathy (LHON)

– Subacute painless bilateral
visual failure
– Males:females ∼ 4 : 1
– Median age of onset 24
years

– Dystonia
– Cardiac pre-excitation syn-
dromes
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Appendix B

Gaussian Convolution as a Solution
to the Heat Equation

This derivation first appeared in [57]. Given the original noise-free image f , and a

blurred version of this image that has been convolved with a kernel, u0 = G ∗ f . It

is a well known fact that the difference between the blurred image and the noise-free

image is roughly proportional to the Laplacian of image f . To be more concrete, we

assume that the kernel G is spatially varying and that we can scale G such that

Gσ (x) =
1

σ
G

(
x

σ
1
d

)
, (B.1)

where σ → 0 is a scale parameter and d is the number of dimensionality of the data

(d = 2 for a 2D image). Furthermore, we make the following assumptions: (i) x (x, y)

is a point in the image domain, (ii) image f is at least C3 around the point x,

(iii) Gσ is a positive radial kernel that satisfies
∫ (

1 + |x|2 + |x|3) Gσ (x)dx < ∞ and
∫

x2Gσ (x)dx = 2. Expanding f in Taylor series around x it has been shown in [153]

that as σ → 0

Gσ ∗ f (x)− f (x)

σ
→ ∇2f (x) . (B.2)
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We can rewrite Eq. (B.2) and have

Gσ ∗ f (x)− f (x) = σ∇2f (x) + O (σ) . (B.3)

If u (x, t) is a solution to the heat equation, then we can write

ut = ∇2u, u (x, 0) = f (x) . (B.4)

Now, provided that f is at least C2 and bounded, we can deduce that

u (x, t)− u (x, 0) = t∇2f (x) + O (σ) . (B.5)

Comparing Eq. (B.3) and Eq. (B.4) shows that convolving the image f with a (Gaus-

sian) kernel Gσ is, for small σ, equivalent to applying the heat equation to f at

scale σ.
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Appendix C

Rudin-Osher-Fatemi Total
Variation-Based Model

The TV-based constrained optimization approach involves the variation (oscillations)

of the image within its domain, subject to constraints related to the statistics of the

noise. The procedure leads to a nonlinear partial differential equation on a manifold

determined by the constraints which is solved by a time-evolution scheme. In the

Rudin-Osher-Fatemi model [314], given a noisy image u0 = f + η, where the true

image f has been perturbed by additive white noise η, the restored image u ≈ f is

the solution of

min
u∈BV (Ω)

TV (u) = min
u∈BV (Ω)

∫

Ω

|∇u| dx,

subject to the following constraints involving the noise:

1

2

∫

Ω

(u− u0)
2 dx =

1

2
|Ω| σ2,

1

|Ω|
∫

Ω

u0dx =
1

|Ω|
∫

Ω

udx.

We apply Lagrange multipliers to minimize the constrained problem

min
u

∫

Ω

|∇u| dx− λ1

∫

Ω

(u− u0) dx− λ2

[
1

2

∫

Ω

(u− u0)
2 dx− |Ω|σ2

]
,
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where λ1 and λ2 are the Lagrange multipliers. We take the derivative with respect to

u, and set the result equal to zero:

∂

∂u

{∫

Ω

|∇u| dx− λ1

∫

Ω

(u− u0) dx− λ2

[
1

2

∫

Ω

(u− u0)
2 dx− |Ω|σ2

]}
= 0. (C.1)

From the first term in the curly brackets, Eq. (C.1), we have

∂ |∇u|
∂u

=
∂ |∇u|
2∂u

+
∂ |∇u|
2∂u

=
∂/∂x

∂/∂x

∂ |∇u|
2∂u

+
∂/∂y

∂/∂y

∂ |∇u|
2∂u

=

∂

∂x

∂ |∇u|
2∂ (∂u/∂x)

+
∂

∂y

∂ |∇u|
2∂ (∂u/∂y)

=
∂

∂x

∂ |∇u|
2∂ux

+
∂

∂y

∂ |∇u|
2∂uy

=

∂

∂x

∂
√

u2
x + u2

y

2∂ux

+
∂

∂y

∂
√

u2
x + u2

y

2∂uy

=
∂

∂x

2ux

2
√

u2
x + u2

y

+
∂

∂y

2uy

2
√

u2
x + u2

y

=

∂

∂x

ux

|∇u| +
∂

∂y

uy

|∇u| =

[
∂
∂x

∂
∂y

]

 1

|∇u|




ux

uy





 = ∇ ·

( ∇u

|∇u|
)

.

(C.2)

From the second term in the curly brackets, Eq. (C.1), we have

∂

∂u
(u− u0) = 1. (C.3)

From the third term in the curly brackets, Eq. (C.1), we have

∂

∂u
(u− u0)

2 = 2 (u− u0) . (C.4)
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Replacing Eqs. (C.2), (C.3), and (C.4) into Eq. (C.1),

∂

∂u

{∫

Ω

|∇u| dx− λ1

∫

Ω

(u− u0) dx− λ2

[
1

2

∫

Ω

(u− u0)
2 dx− |Ω|σ2

]}
= 0

∫

Ω

∇ ·
( ∇u

|∇u|
)

dx− λ1

∫

Ω

(1) dx− λ2

[
1

2

∫

Ω

2 (u− u0) dx− 0

]
= 0.

(C.5)

Since Eq. (C.5) has to hold ∀Ω then

∇ ·
( ∇u

|∇u|
)
− λ1 − λ2 (u− u0) = 0, in Ω (C.6)

If we set homogeneous Neumann boundary condition, i.e., we do not allow flux in

or out of the system, the constraint regarding the mean intensity being constant is

automatically satisfied. Thus, there is no need to carry the Lagrange multiplier λ1,

and Eq. (C.6) becomes

−∇ ·
( ∇u

|∇u|
)

+ λ (u− u0) = 0, in Ω

〈g · ∇u,n〉 = 0, on ∂Ω.
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Appendix D

Approximation of the Variance of
the Noise

In subsection 4.2.1 we proposed to approximate the unknown variance of the additive

noise by the following expression:

var (η) = var (u0)− var (Gσ ∗ u0) , (D.1)

where the variance of the (unknown) true image is approximated by the variance of

the convolved noisy image with a Gaussian kernel, Gσ, of width σ = 1. This rationale

is based on the assumption that the true image has been perturbed by additive white

noise, u0 = f + η, and that the noise is independent from the signal. In this case,

the variance of the noisy image has to be equal to the sum of the variance of the true

image and the variance of the noise, i.e., var (u0) = var (f) + var (η).

The experiment consisted in perturbing the true image with Gaussian white noise

of increasing variance, 0 6 σ 6 64, and approximating the variance of the noise by

Eq. (D.1). We observe in the figures below that the approximation is very reasonable,

specially if we consider that noise of high variance, e.g., σ ≥ 64, is somewhat rare

since in those cases the SNR is extremely low, to the point where there is not much

signal left after the quantization.
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Figure D.1: Approximation of the variance of the noise for Lena.
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Figure D.2: Approximation of the variance of the noise for the Clown.

130



0 10 20 30 40 50 60
0

10

20

30

40

50

60

Variance of added noise

A
p

p
ro

x
im

a
te

 v
a

ra
in

c
e

 o
f 

th
e

 n
o

is
e

Approximation of Variance of the Noise for the Baboon

 

 

Exact variance

Approximate variance

Figure D.3: Approximation of the variance of the noise for the Baboon.
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Figure D.4: Approximation of the variance of the noise for the Cameraman.
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Appendix E

Lagrange Multipliers

We can obtain the two unknown Lagrange multipliers, λ1 and λ2, needed in subsection

4.3.2, from the following equations:

ut = ∇ ·
( ∇u

|∇u|
)
− λ1

u2
0

u3
− λ2

u0

u2
, (E.1)

∂

∂t

∫

Ω

(u0

u

)
dx = −

∫

Ω

(u0

u2
ut

)
dx = 0, (E.2)

∂

∂t

∫

Ω

((u0

u

)2

− 1

)
dx = −

∫

Ω

(
u2

0

u3
ut

)
dx = 0. (E.3)

Multiply Eq. (E.1) by −u2
0

u3

−u2
0

u3
ut = −u2

0

u3
∇ ·

( ∇u

|∇u|
)

+
u2

0

u3
λ1

u2
0

u3
+

u2
0

u3
λ2

u0

u2
,

−u2
0

u3
ut = −u2

0

u3
∇ ·

( ∇u

|∇u|
)

+ λ1
u4

0

u6
+ λ2

u3
0

u5
.

Integrate over Ω (for notation simplicity we drop the dx from the integral over the
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image domain Ω)

−
∫

Ω

u2
0

u3
ut = −

∫

Ω

u2
0

u3
∇ ·

( ∇u

|∇u|
)

+

∫

Ω

λ1
u4

0

u6
+

∫

Ω

λ2
u3

0

u5
.

By Eq. (E.3)

−
∫

Ω

u2
0

u3
ut = −

∫

Ω

u2
0

u3
∇ ·

( ∇u

|∇u|
)

+

∫

Ω

λ1
u4

0

u6
+

∫

Ω

λ2
u3

0

u5
= 0,

−
∫

Ω

u2
0

u3
∇ ·

( ∇u

|∇u|
)

+

∫

Ω

λ1
u4

0

u6
+

∫

Ω

λ2
u3

0

u5
= 0,

∫

Ω

λ1
u4

0

u6
+

∫

Ω

λ2
u3

0

u5
=

∫

Ω

u2
0

u3
∇ ·

( ∇u

|∇u|
)

.

Consider λ1 and λ2 constant for each t

λ1

∫

Ω

u4
0

u6
+ λ2

∫

Ω

u3
0

u5
=

∫

Ω

u2
0

u3
∇ ·

( ∇u

|∇u|
)

. (E.4)

Multiply Eq. (E.1) by −u0

u2

−u0

u2
ut = −u0

u2
∇ ·

( ∇u

|∇u|
)

+
u0

u2
λ1

u2
0

u3
+

u0

u2
λ2

u0

u2
,

−u0

u2
ut = −u0

u2
∇ ·

( ∇u

|∇u|
)

+ λ1
u3

0

u5
+ λ2

u2
0

u4
.

Integrate over Ω (for notation simplicity we drop the dx from the integral over the

image domain Ω)

−
∫

Ω

u0

u2
ut = −

∫

Ω

u0

u2
∇ ·

( ∇u

|∇u|
)

+

∫

Ω

λ1
u3

0

u5
+

∫

Ω

λ2
u2

0

u4
. (E.5)
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By Eq. (E.2)

−
∫

Ω

u0

u2
ut = −

∫

Ω

u0

u2
∇ ·

( ∇u

|∇u|
)

+

∫

Ω

λ1
u3

0

u5
+

∫

Ω

λ2
u2

0

u4
= 0,

−
∫

Ω

u0

u2
∇ ·

( ∇u

|∇u|
)

+

∫

Ω

λ1
u3

0

u5
+

∫

Ω

λ2
u2

0

u4
= 0,

∫

Ω

λ1
u3

0

u5
+

∫

Ω

λ2
u2

0

u4
=

∫

Ω

u0

u2
∇ ·

( ∇u

|∇u|
)

.

Consider λ1 and λ2 constant for each t

λ1

∫

Ω

u3
0

u5
+ λ2

∫

Ω

u2
0

u4
=

∫

Ω

u0

u2
∇ ·

( ∇u

|∇u|
)

. (E.6)

Putting Eqs. (E.4) and (E.6) in matrix-vector form




∫
Ω

u4
0

u6

∫
Ω

u3
0

u5

∫
Ω

u3
0

u5

∫
Ω

u2
0

u4







λ1

λ2


 =




∫
Ω

u2
0

u3∇ ·
(
∇u
|∇u|

)

∫
Ω

u0

u2∇ ·
(
∇u
|∇u|

)


 .

Define

D =

∫

Ω

u4
0

u6

∫

Ω

u2
0

u4
−

∫

Ω

u3
0

u5

∫

Ω

u3
0

u5
,




λ1

λ2


 =

1

D




∫
Ω

u2
0

u4 − ∫
Ω

u3
0

u5

− ∫
Ω

u3
0

u5

∫
Ω

u6
0

u4







∫
Ω

u2
0

u3∇ ·
(
∇u
|∇u|

)

∫
Ω

u0

u2∇ ·
(
∇u
|∇u|

)


 .

Define

B = ∇ ·
( ∇u

|∇u|
)

.
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Then, recalling that D = D (x) and B = B (x)




λ1

λ2


 =

1

D




∫
Ω

u2
0

u4 − ∫
Ω

u3
0

u5

− ∫
Ω

u3
0

u5

∫
Ω

u6
0

u4







∫
Ω

u2
0

u3 B
∫

Ω
u0

u2 B


 ,

λ1 =
1

D

(∫

Ω

u2
0

u4

∫

Ω

u2
0

u3
B −

∫

Ω

u3
0

u5

∫

Ω

u0

u2
B

)
, (E.7)

λ2 =
1

D

(∫

Ω

u6
0

u4

∫

Ω

u0

u2
B −

∫

Ω

u3
0

u5

∫

Ω

u2
0

u3
B

)
. (E.8)
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[279] S. Osher, A. Solé, and L. Vese. Image decomposition and restoration using

total variation minimization and the H−1 norm. SIAM Journal on Multiscale

Modeling and Simulation, 1(3):349–370, 2003.

[280] V.P. Palamodov. Reconstructive integral geometry. In Monographs in Mathe-

matics, volume 98. Springer, Berlin, Germany, 2004.

[281] V.Y. Panin, G.L. Zeng, and G.T. Gullberg. Total variation regulated EM algo-

rithm. IEEE Transactions on Nuclear Science, 46(6):2022–2210, 1999.

[282] G. Papandreou and P. Maragos. A cross-validatory statistical approach to scale

selection for image denoising by nonlinear diffusion. In Proceedings of IEEE

Computer Society Conference on Computer Vision and Pattern Recognition,

volume 1, pages 625–630. IEEE, 2005.

[283] S. Paris and F. Durand. A fast approximation of the bilateral filter using a sig-

nal processing approach. In Proceedings of European Conference on Computer

Vision, pages 568–580, 2006.

[284] S. Paris, P. Kornprobst, and F. Tumblin, J. Durand. A gentle introduction to

bilateral filtering and its applications. In International Conference on Computer

Graphics and Interactive Techniques. ACM SIGGRAPH 2007, Association for

Computing Machinery, 2007.

[285] P.A. Penczek. Three-dimensional spectral signal-to-noise ratio for a class of

reconstruction algorithms. Journal of Structural Biology, 138(1-2):34–46, 2002.

[286] P.A. Penczek. Variance in three-dimensional reconstructions from projections.

In Proceedings of 1st IEEE International Symposium on Biomedical Imaging,

pages 749–752. IEEE, 2002.

164



[287] P.A. Penczek and J. Frank. Resolution in electron tomography. In J. Frank,

editor, Electron Tomography: Methods for Three-Dimensional Visualization of

Structures in the Cell, chapter 10, pages 307–330. Springer, Berlin, Germany,

2nd edition, 2006.

[288] L.-M. Peng, S.L. Dudarev, and M.J. Whelan. High-energy electron diffraction

and microscopy. In Monographs on the Physics and Chemistry of Materials,

volume 61. Oxford University Press, Oxford, England, 2004.

[289] G. Perkins and T. Frey. Electron tomography. In T. Creighton, editor, Ency-

clopedia of Molecular Biology, pages 796–. John Wiley & Sons, New York, New

York, 1999.

[290] G.A. Perkins and T.G. Frey. Recent structural insight into mitochondria gained

by microscopy. Micron, 31(1):97–111, 2000.

[291] G.A. Perkins, C.W. Renken, T.G. Frey, and M.H. Ellisman. Membrane archi-

tecture of mitochondria in neurons of the central nervous system. Journal of

Neuroscience Research, 66:857–865, 2001.

[292] G.A. Perkins, C.W. Renken, J.Y. Song, T.G. Frey, S.J. Young, S. Lamont, M.E.

Martone, S. Lindsey, and M.H. Ellisman. Electron tomography of large, multi-

component biological structures. Journal of Structural Biology, 120(3):219–227,

1997.

[293] G.A. Perkins, J.Y. Song, L. Tarsa, T.J. Deerinck, M.H. Ellisman, and T.G.

Frey. Electron tomography of mitochondria from brown adipocytes reveals

crista junctions. Journal of Bioenergetics and Biomembranes, 30(5):431–442,

1998.

[294] P. Perona and J. Malik. Scale space and edge detection using anisotropic

diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence,

12(7):629–639, 1990.

[295] P. Perona, T. Shiota, and J. Malik. Anisotropic diffusion. In B.M. ter

Haar Romeny, editor, Geometry-Driven Diffusion in Computer Vision, vol-

ume 1 of Computational Imaging and Vision, pages 72–92. Springer, Kluwer,

1994.

165



[296] M. Persson, D. Bone, and H. Elmqvist. Total variation norm for three-

dimensional iterative reconstruction in limited view angle tomography. Physics

in Medicine and Biology, 46(3):853–866, 2001.

[297] P.X. Petit, M. Goubern, P. Diolez, S.A. Susin, N. Zamzami, and G. Kroemer.

Disruption of the outer mitochondrial membrane as a result of mitochondrial

swelling. The impact of irreversible permeability transition. Federation of Eu-

ropean Biochemical Societies Letters, 426:111–116, 1998.

[298] G. Petschnigg, M. Agrawala, H. Hoppe, R. Szeliski, M. Cohen, and K. Toyama.

Digital photography with flash and non-flash image pairs. ACM Transactions

on Graphics, 23(3):664–672, 2004.

[299] T.Q. Pham and L.J. van Vliet. Separable bilateral filtering for fast video pre-

processing. In Proceedings of IEEE International Conference on Multimedia,

pages 4–7. IEEE, 2005.

[300] J. Plitzko and W. Baumeister. Cryoelectron tomography (CET). In P.W.

Hawkes and J.C.H. Spence, editors, Science of Microscopy, chapter 7, page

535604. Springer, Berlin, Germany, 2007.

[301] L.A. Pon and E.A. Schon. Preface. In L.A. Pon and E.A. Schon, editors,

Mitochondria, pages xxiii–xxiv. Academic Press, San Diego, California, 2007.

[302] T. Preusser and M. Rumpf. An adaptive finite element method for large scale

image processing. In Proceedings of Scale-Space ’99, pages 223–234, 1999.

[303] M. Proesmans, E.J. Pauwels, L.J. van Gool, T. Moons, and A. Oosterlinck.

Image enhancement using non-linear diffusion. In Proceedings IEEE Computer

Society Conference on Computer Vision and Pattern Recognition, volume 15-17,

pages 680–681. IEEE Computer Society, 1993.

[304] M. Rademacher. Weighted back-projection methods. In J. Frank, editor, Elec-

tron Tomography, Three-Dimensional Imaging with Transmission Electron Mi-

croscope, pages 91–115. Plenum Press, New York, New York, 1992.
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[315] H. Rullg̊ard, O. Öktem, and U. Skoglund. A componentwise iterated relative en-

tropy regularization method with updated prior and regularization parameter.

Inverse Problems, 23:2121–2139, 2007.

167



[316] B.B. Saevarrson, J.R. Sveinsson, and J.A. Benediktsson. Speckle reduction of

SAR images using adaptive curvelet domain. In Proceedings of IEEE Interna-

tional Geoscience and Remote Sensing Symposium, volume 6, pages 4083–4085,

2003.

[317] B.B. Saevarrson, J.R. Sveinsson, and J.A. Benediktsson. Combined wavelet and

curvelet denoising of SAR images. In 6, editor, Proceedings of IEEE Interna-

tional Geoscience and Remote Sensing Symposium, pages 4235–4238, 2004.

[318] B.E.H. Saxberg and W.O. Saxton. Quantum noise in 2d projections and 3d

reconstructions. Ultramicroscopy, 6(1):85–89, 1981.

[319] I.E. Scheffler. A century of mitochondrial research: Achievements and perspec-

tives. Mitochondrion, 1:3–31, 200.
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