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ABSTRACT OF THE THESIS

Optimizing a Coral Nerve Net
by
Eugenia J. Chen
Master of Science in Computational Science
San Diego State University, 2008

Coral polyps contract when electrically stimulatedl a wave of contraction travels
from the site of stimulation at a constant speeddéfs of coral nerve networks were
optimized to match one of three different experitayobserved behaviors. To search for
model parameters that reproduce the experimensareditions, we applied genetic
algorithms to increasingly more complex models obeal nerve net. In a first stage of
optimization, individual neurons responded witrksegito multiple, but not single pulses of
activation. In a second stage, we used these neaothe starting point for the optimization
of a 2-dimensional nerve net. This strategy yieldegtwork with parameters that
reproduced the experimentally observed spreadatfation.
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CHAPTER 1

INTRODUCTION

Corals, members of the phylum coelenterata, arsithplest organisms with a
nervous system. Depending on the symmetry of tieadly plans, hexacorals (class
Anthozoa, subclass Zoantharia, order Scleratin@yding the reef-building species) and
octocorals (class Anthozoa, subclass AlcyonarideoAlcyonacea), are distinguished
(Veron 2000; Fabricius and Alderslade 2001). Whasé species have in common is a
structure composed of multiple polyps embeddeddaramon body. Each polyp consists of
a tube with tentacles at its upper margin, whiehwsed to catch plankton. The individual
polyps are similar to sea anemones (class Anthadmrlass Zoantharia, order Actiniaria,
Figure 1a), to which corals are related. The bodie tconsists of endodermal tissue on the
inside and ectodermal tissue on the outside. Thegaisms, in contrast to all higher
metazoans, lack a mesoderm. A cell-free substédneanesogloea, is located between the
endo- and ectoderm. The mouth of coral polyps th Hte entry and exit point into their
intestine. Many species of corals contain suctvelstifeeding polyps, called autozoids and
non-feeding, supporting polyps, called siphonozdisddition to feeding on plankton,
many corals harbour photosynthetic symbionts, duxanthellae. Despite their otherwise
rather simple Bauplan, the ectoderm already cosi@inetwork of nerve cells (neurons),
which are relatively unspecialized when comparetthéoneurons of higher animals (Bullock
and Horridge 1965). After the initial settlementaolarva, a single organism contains

anywhere between a single polyp to hundreds ofd#uads Acroporg of polyps. The
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nervous system is continuous between the individaobips, and Horridge (1957) and Chen
et al. (2008) have observed the spread of actgtgss many polyps in response to repetitive
electrical stimulation. The response of coral caerwas varied between species of corals. In
Palythoa(Figure 1b), the diameter of the area of contdhp@yps increased with a constant
velocity. The model was optimized to fit the averagsponse and the variation is omitted
from this study. This is related to, but distineirh the study by Horridge, where a sublinear,

linear or superlinear spread of excitation as &tion of stimuli, not time, was observed.

baseline

Figure 1. Structure of a polyp and observed patterns of the spread of excitation
across polyps. A: Schematic drawing overlayed onto photograph of a polyp. B:
Spread of polypal contraction activity at theindicated timesin a Xenid soft coral
collected in the Sea of Cortez. The polyps are stimulated with consecutive pulses
through a suction electrode and neighboring polyps contract in aradially
expanding pattern at arate of approximately 1 polyp/second.
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Theodore H. Bullock worked for over 40 years to eldtie spread of contractions in a coral
nerve net. The long process of finding an appro@sat of parameters proceeded by trial and
error. This process is greatly sped up by usingreetic algorithm (GA), an optimization
procedure that is analogous to the selection foedss that occurs during biological evolution
(Mitchell 1998). The model of a coral nerve net watimized to match experimental
observations of corals that were electrically pdxtd. There are three levels of complexity
that can be distinguished and are biologically wad&d: the individual neuron, the single
polyp containing many neurons, and the coloniabaigm containing many polyps. We
sequentially optimized models of the first two loése three levels. We omitted an explicit
simulation of the polyp structure within the coldeyel and collapsed the coral nervous net
into one layer of neurons during the optimizatioogedure. The polyps are implicitly
modeled by the layer of neurons within the strueitlosest in proximity to the
interconnective tissue between polyps. A model thaseindividual neural elements as
opposed to a mean-field model was chosen as it neatistically models the structure of the

nervous system.

In GAs, first a population of candidate solutiomsqur case coral nerve net models)
is constructed from a population of parameter dten an alternation of rounds of selection
and the introduction of variation mimic the natysabcess, leading to the successively better
adaptation of natural organisms to their environmkis important to point out that

although GAs mimic the algorithmic structure oflbgical evolution, they are not meant as
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a model of evolution, merely an optimization stggfe In this thesis, we improve the basic
genetic algorithm concept by mimicking another deatof biological evolution, its
modularity. We do this by first optimizing the pareters of the individual neuron models
that compose the nerve net. During a second stepise these values as starting points and
additionally optimize the parameters of the conioestbetween neurons. In this manner, we
obtained the parameter values of a model of a o@mafe net reproducing the experimentally

observed spread of excitation.

!In the same sense, the terminology used here,asutdenome” for the parameters to be optimized and
“generation” for a round of optimization do notleet a claims about modeling biological evolutiar merely
follow GA terminology.



CHAPTER 2

METHODS

We model the nervous system of a coral as a homaagenetwork of connected
single-compartment neurons. Each neuron contaisléssical fast Nadelayed rectifier K
and leak Hodgkin-Huxley ion channels (Hodgkin andkldy 1952). The Hodgkin-Huxley
equations are implemented by using equations (15}

Lot = Tna + 16 + 1+ 1 (1)
The total current across the cell membrahg Xis the sum of the ionic currents(,1,,1,)
and the applied current { ) from the stimulus or network connections.
INa:gNa(V_eNa) (2
The sodium current results from the potential défee across the cell membrane (v) and the

sodium equilibrium potential {g).

gNa = gNamsh (3)
The sodium conductance depends on the maximummaztinductanced,, ), the

probability of a sodium channel activation gatenlgein an open state (m), and the
probability of a sodium channel inactivation gaéenlg in a open state (h).

Il =0 (V—g,) (4)
The potassium current results from the potentiéince across the cell membrane (v) and

the sodium equilibrium potential e

Ok :gKn4 (5)



Sodium conductance depends on the maximum sodinductance @, ) and the
probability of a potassium channel activation gagag in an open state (n).

I, =g, (v-§) (6)
Leakage current results from the potential diffeeeacross the cell membrane (v) and the

leakage equilibrium potential je

dm_ (m, -m)

dt m, @
dh_ (h, —h)

d  h ®)
dn_(n,-n)

d n ®)

T

The respective rates of change of the sodium daiivaariable (m), sodium inactivation
variable, and the potassium activation variableafe)time and voltage dependent.
m, = 0.1« vtrap[—(v+ 40),10] (10)
[0.1x vtrap—(v + 40),10] + 4ex;{_(vlg65)}

m, = 1 (12)
[0.1% virag—(v + 40)10] + 4exp{_ ("1265)}
(v+65)
h = 007exp[~%; "] : (12)

007 exp[,29] + {ex;{_(vlg%)j + 1}

1
h = (13)

1
007exp[?] + {exp{_ (V1J835) j + 1}




N o= 0.1* vtrag—(v +55),10] (14)

0

[0.1+ vtrag—(v + 55)10] + O.lZSex;{_(VBJ(F)(SS)}

n = L (15)

T [0.1+ vtrapg—(v + 55)10] + 0.125ex;{_(v83(55)}

Rate constants for the sodium activation variabte (m, ), the sodium inactivation variable
(h,,h), and the potassium activation variabfe (n_) are fit to HH empirical data.
1- 0.5(% (ﬁJ <1x10°
y y
X é} > 1410°

G

The function vtrap(x,y) is used to avoids divislmnzero in the rate equations.

vtrap(x, y) = (16)

Table 1. Hodgkin-Huxley Parameters Held Constant

Parameter Description Units Value
eNa Sodium Reversal Potential mV 50

& Potassium Reversal Potential mV =77

g, Leakage Conductance Sfkem 0.0003

We use the Hodgkin-Huxley model of neural excitgbds it represents a well-
characterized description of neural spiking, atdaalgh the precise parameter values are
likely to be different, we assume that spiking imade is equally mediated by depolarization
activated de-and hyperpolarizing channels. Unfoteigathere are no intracellular voltage
recordings of coral neurons extant. This did nlmivalus to model the electrical behavior of
coral neurons with kinetic parameters specifidiese organisms. We also lack detailed

information on the details of synaptic transmissionoelenterates, so we used a generic



8
chemical model of an excitatory synapse in our rhd@kegeneric model we mean that we
do not make any assumptions about the nature amtlodved neurotransmitters and
receptors. Rather, we assume chemical transmissibraw excitatory reversal potential at
the postsynaptic side. The experimental electstialulation was simulated as synaptic

potentials in the neurons.

The network is an extension of the model of a coeale net simulated in Josephson
et al (1961) and is oriented in a 2-dimensional gridwvHiodgkin-Huxley neurons positioned
a uniform distance from all nearest neighbors (FEgw2). Neurons are connected
bidirectionally in the horizontal and vertical dit®ns with the NEURORIfunction NetCon.
Diagonal connections occur only in the cornershef squares formed by the neurons with
respect to the center polyp in order to conneatelirons with the same number of incoming
connections (Figure 3). A refractory period is agplto each neuron following an action

potential to prevent reverberatory activity.

2 http://neuron.yale.edu/
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Figure 2. 2D projection of the coral network. 29x29 neurons in the xy-plane
shown as black ellipses with polyps outlined in red and polyp neurons colored
in blue.
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Figure 3. Network Connectivity. Center
polyp (blue) and nearest neighbor
neurons (outer polyp neuronsin black)
with connections shown in purple.

A NEURON function called NetCon connects a source @m@uwvith a target synapse
belonging to a neighboring neuron. At each timg,stéetCon oversees a connection by
applying the current from the source neuron ontd tdrget synapse if the source neuron
voltage crosses threshold. The connection weigtarpeter scales the strength of the current
applied to the target neuron and a delay parante®Ermines the onset of the current. A
connection threshold value of 0 mV is held constanite connection weight and delay are
varied in the optimization. Current from a soureanmon is applied to the target neurdn 5
milliseconds after the membrane voltage of the s®ureuron membrane voltage exceeds
threshold, wheré\. is the value of the delay multiplier. The delay liplier scales the

modeled distance (pBm) between neurons linearly.

Each neuron is associated with a single synapse.sVhapse has a discontinuous

change in conductance when excitation from a ne@ghf@ neuron is received through the

10
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function NetCon and undergoes exponential decayrditgpto the time constant The time
constant is fixed and the synaptic current is givgmhe following equations:

i=g(v-0) 17)
g = weight-e™'* (18)

where € =0 mV (synaptic threshold) ane=1.

A second network is a 3-dimensional extension @f finst network with polyps
positioned a uniform distance from the center & gnid based on connection order and a
polyp is positioned in the center of the grid. Tgwyp neurons form 3x3 squares in the xy
plane of the network and layers of neurons aretiposd in the z direction to form a total
polyp height of four layers of neurons (Figure H)the connective layer (z = 0) there is a
neuron in the center of the 3x3 polyp square. Leyydove this square (z > 0) do not contain
a neuron at the center, corresponding to the eatwdeplacement of neurons in the polyp
body. There are 43 polyps positioned in the gridrimy the 3D network simulations, the
neurons on the = 4 plane of the center polyp are stimulated whereamgd the 2D network

simulation, a 3x3 square of neurons in the centéneogrid are stimulated.

The program first loads a setup file which credibesneurons, synapses, and specifies
parameters held constant throughout the optimizatippendix A). A file containing the
genome, the parameters varied during the optinoimatbads and Hodgkin-Huxley dynamics
are added to the neurons with the conductance paeasnspecified in the genome. The
network is positioned in the xy plane and in theifpee z direction in the 3D network. This

positioning is used for visualization purposes aarigl does not affect the dynamics of the

11
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Figure 4. Mapping a polyp to the 2D

grid. Each model polyp, composed of

four layers of neurons, correspondsto a

3x3 squarein the XY projection of the

3D network.
network. However, the dimensions of the neuronspeeified during this loop. Each neuron
is simulated as an approximately elliptical celtlipoSeveral connection subroutines are
loaded to connect neurons horizontally, verticadlygd diagonally. The stimulus is coded in a

subroutine that specifies the neurons to be stiredjdhe time intervals between impulses,

and the strength of the stimulus, all of which laeél constant throughout the optimization.

Two simulations are conducted after the netwoffkiiged. The first simulation runs

for 200 ms. The resting voltage of the center neatdb0 ms is recorded and the simulation a

12
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single stimulus is applied at 60 ms. After the datian, the number of firings and spike

times of each neuron is recorded.

The second simulation runs for a length of timepprtional to the size of the delay

parameter. Simulation length is calculated as ¥adldor the second simulation.
3 .
tona = 200+§ (delay=* netsiz¢ (19)

Resting voltage of the center neuron is recordest &0 ms and stimulation begins at 60 ms,
where three impulses are applied in 2 ms intervalsee number of firings and spike times of
each neuron are also recorded. Following the sesmmdlation, the fithess score is
calculated and recorded in an output file. Otheoréed network output information,
including number of firings, resting voltage, anfledlence in firing times between the
perturbed neurons and neighboring neurons arededon the file along with the genome

used to create the network.

The GA is used to optimize the parameters of fitletmodel neurons, then the model
nerve net so that the models perform the desirbdwers (Figure 5). During the single-cell
simulations, a single action potential is elicitedhe neuron. This is followed by the second
simulation where it is stimulated by 3 consecutimpulses. The single cells are optimized to
spike in response to the repeated, but not thdesstonulation. During the network
simulations, a 3x3 square of neurons in the ceoftdre network are stimulated by either 1 or
3 consecutive impulses. The networks are optimiaed propagation of the edge of

activation linear in time in response to the trigienulation.

13
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A list of parameters called a “genome” in the Gi&rlature contains the parameters
specifying the models. A neuron genome containararpeters: maximum sodium and
potassium conductance and leakage reversal pdiéntily the conductance densities and
not the kinetic parameters are varied in ordereepkthe search-space low-dimensional. For
the network, it additionally contains parameterstfe@ connection delay and the connection
weight. Cell body dimensions, stimulus strength darhtion, and the interval between

consecutive stimuli are held constant.

There are 32 models in the population, each wdlifarent set of parameters (Table
2). After each round of simulations, the perforr@an€each model network is evaluated and
assigned a fitness value. The networks are thekethaccording to their fitness values. The
generation of models is drawn from the top scorigo of the population, eliminating the
possibility of selection from the lowest ranking®8®f the population. Probability of
selecting a given genome is scaled according toathieing of its fitness value, so that
genomes corresponding to higher scoring networksrare likely to appear in the next
generation. The two best scoring network genomesaried over to the subsequent
generation without alteration, a process calldisell This process is used to avoid the loss

of favorable genes through the stochastic selegtioness.

14



Table 2. Moddl Parameters

Parameter | Description Units Initial Value
Single Neuron 2D Network

g_Na Maximum sodium channel S/en? | 0.12 0.161203
conductance

a Maximum potassium channel| s/cn? | 0.036 0.036
conductance

e Leakage reversal potential mV -54.3 -54.3

y) Multiplier scaling delay in 50
conduction of excitation
between neurons

weight Weight of connection betweel 0.01
neurons

GA

1. Rank gencmes based on fitness score

Rank

1

(Winner/Best Fitness Score)

32

2. Select a genome for mulation and/or crossover
Probability of selection increases with genome rank.

1

-mm|P1|P2|P3|P4IP5| (selected genome)

3

Figure 5. GA optimization steps. The selection, mutation, and crossover (steps 2-4)

3. Mutation
Parameter is altered by adding a random number.

+ random . (new parameter)

4. Crossover
Parameters switched between two genomes.

= 0B BB

5. Save new genome
Elitism ensures winner genome survival.

15

(Winner from previous generation)

areiterated 32 times each generation. Oncethe 32 iterations are complete, the new

genomes are used to build the next generation of neurons or networks. Elitism is
implemented by copying thetop two ranking genomes of the previous generation

over two of the genomes saved during the GA process.

15
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Two sources of variability are used to alter theayees: mutation and recombination.

During mutation, a small random number is addeebith parameter with a mutation
probability of approximately 90% for connection ganeters and approximately 20% for
conductance parameters. Mutation rates for coroeprameters are chosen to be much
higher for connection parameters since the conduetparameters were already tuned
during the single neuron optimization and the catina parameters are generally less
sensitive to small perturbations. The random nungbdrawn from a normal distribution
with a mean of zero and standard deviation scaleshit the parameter based on sensitivity
to small perturbations and initial value (TablelBsodium conductance, potassium
conductance, connection weight or connection detagmeters are mutated to negative
values, the absolute value of these parameterswgerkin the simulation and the reflected

positive values are recorded in the output file wiweiting the genome.

Conductance parameters and the leakage reversaitiagbmutation standard
deviations are between approximately 2% and 6%aeif tespective initial values. The
standard deviation of the delay mutation paramstset to 0.2% in order to allow the GA to
make small adjustments to firing velocity. The cection weight mutation standard
deviation is set very high since the network fignealue is insensitive to larger fluctuations
in connection weight. Individual parameters repnéisg the same network parameter from
two different genomes are swapped with a crosspnarability of 45%. We first optimize
the parameters of individual neurons to resporttiécsingle perturbation with no action
potentials firing, but to fire once in responseéthe multiple perturbations (Figure 6). Neurons

are also selected to have a resting voltage ctosg0tmV.

16



Table 3. Mutation Parameters

Parameter Standard Deviation Initial Value
Maximum Sodium Conductand/cn? ) 0.01 0.161203
Maximum Potassium Conductan(S/cmz) 0.001 0.036
Leakage Reversal PotentiahV) 1 -54.3
Delay multiplier 0.1 50
Connection weight 0.1 0.01
A40
{% 0 Time [ms]
=
N~
B 40

Time [ms]
0 50 100 150 200

Membrane Potential

-80

Figure 6: Single neuron model
simulations. M embrane potential
tracesin responseto A: asingle
stimulation and B: to three stimuli.

17
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The single neuron fitness function is:
f=200x +5]1-y| + |-60-v| / 2 + | v- W]/ 2, (20)
wherex is the number of action potentials fired followitig single perturbatioy,is the
number of action potentials fired following the tiplle perturbationsy, is the resting

voltage (before perturbation) amdis the voltage 370 ms after perturbation.

The GA procedure was repeated to optimize thegarmmeters: maximum sodium
and potassium conductance, leakage reversal patesannection weight, and delay
multiplier. All parameters were the same for allirens in the network. Default Hodgkin-
Huxley parameters were used as initial valueshHerconductance and leakage reversal
potential parameters and the connection weightdetely multiplier were also assigned
initial values. The fitness function selected fardial spread of firing throughout the
network with a constant velocity (Figure 7). In auah, the fitness function requires no
action potentials in response to the first perttioibeand a single action potential in response
to the second perturbation from all neurons innéevork. A resting voltage of
approximately -65 mV is also required with a smatlentribution to the fithess value than

the firing behavior. The network fitness functien i

f=|-65-v,|+2(x,y) +‘250- W

+2(5'Xi'i+10'|yi_1|+|tavg_ti|) (21)

wherex is the average number of action potentials firedheyth order neighbors following
the single perturbatior; is the average number of action potentials firgdthborder
neighbors following the multiple perturbatiotisis the average time elapsed between the
firing times of the first spikes fromh and(i+1)th order neighborgavg is the average time

elapsed between the first spikes of adjacent neight is the resting voltage(x,y)is the

18
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additional cost for having too few or too manyi@eipotentials fired, anav,, is the

average velocity of the spread of firing.

All simulations and optimizations were carried outhe neuronal simulation
language NEURON (version 5.7, Hines and Carneva@®d)L A single generation of the GA,
an iteration of the optimization routine, which ludes construction of 32 networks,
electrophysiological simulations (200 ms and ~406®&) and selection, mutation and
recombination of genes required approximately lirftutes on 4 parallel Opteron AMD 2.4
GHz processors. The simulation code is availab&nupquestand will be submitted to the

Yale Sense Lab Model Database (http://senselabyaededu/modeldb/).

3 Email eugeniajchen@gmail.cofor requests.

19
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Figure 7: 2D Network
model smulations. Spread
of excitation in an 11x11
array of polypsin response
to triple stimulation of the
center neuron. Timesince
the stimulation is shown to
theleft of each array.
Excited neurons are shown
in yellow and inactive
neuronsin violet.
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CHAPTER 3

RESULTS

The patterns we aimed to replicate were observed HyBullock inPalythoain the
Sea of Cortez, Mexico and in the Enewetok Atollha Republic of the Marshall Islands,
which was then a UN trusteeship of the USA (ChedB20Screenshots from video footage
of the observed propagation patterns in responsgptetitive electrical stimulation are shown

in Figure 1b.

In a first step to achieve this goal, we optimizatyle neurons so that they would
respond with a spike to three but not to one sttmh pulse. The reasoning behind this step
is that a network which responds to repetitive station in an interesting manner is most
likely composed of subunits which perform some kafightegration. The single neuron
parameters were found after 43 generations and: were

Table 4. Optimized Neuron Parameters

gnabar_hHS/cn??) 0.161203
gkbar_hh(s/cm?) 0.036
el_hh(mV) -54.3

A single perturbation caused a small subthreshmcease in voltage, while two or more
perturbations caused a single firing in the singdaron, from the resting potential of -65 mV

(Figure 6).
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As a second step, we took these parameters adiagstalue and optimized for a
linear spread of excitation. The network paramef@arshis behavior were found after 26
generations and were:

Table 5: Optimized Network Parameters.

gnabar_hHS/cn? 0.215724
gkbar_hh(s/cn?) 0.043386
el_hh(mV) -54.198300
Delay multiplier 49.986900
Connection weight 0.545957

The first perturbation caused a small subthresimaictase in the voltage of the center polyp
neurons and two or more perturbations caused &dingg from all neurons in the network.
Firing was simultaneous in neurons equidistant ftbencenter polyp and spread radially
with an approximately constant velocity of 1 ned2&® ms (Figure 7). We initially assumed
that -60 mV was a reasonable resting potentialferparameter search. After the single
neuron optimization, we found that the Hodgkin-Hayxheurons in the NEURON program
environment favor a resting potential of -65 mV #range of maximum sodium
conductances (approximately 0.09 to 0.17 $yemhile the maximum potassium
conductance is held constant at the default valbe.network fitness function favored -65
mV as the ideal resting potential rather than -80imthe single neuron fitness function,
however, the difference in fithess punishment betwiese two selected resting potentials is

marginal.
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The 3D network was constructed and run with thaipaters optimized for the 2D
network. Firing spread with the same constant vglaf 1 neuron/250 ms and firing within
polyps of similar order occurred simultaneoushg(iFe 8). The linear radial spread of firing
solution was preserved between the 2D network &nddyp network (Tbl. 6). Stimulated
neurons are of order 0. The first 3 orders of nesiia the 3D network (highlighted) are
polyp neurons, which have fewer nearest neighliws heurons in the xy plane. Spike times
are similar between the linear and 2D networkstbadD network spike times are similar to
the latter two networks after the excitation speeadtside of the stimulated polyp (order 3
and greater).

Table 6. Spike times of neurons by order relative to stimulated neuron(s).

Spike Times (ms)
Neuron Order/Network Type Linear 2D 3D
0 0.065144 0.065144 0.065188
1 0.377664 0.377664 0.377708
2 0.690171 0.690171 0.690223
3 1.002678 1.002678 1.002738
4 1.315185 1.315185 1.315254
5 1.627692 1.627692 1.627769
6 1.940199 1.940199 1.940284
7 2.252706 2.252706 2.252799
8 2.565213 2.565213 2.565314
9 2.87772 2.87772 2.87783
10 3.190227 3.190227 3.190345
11 3.502734 3.502734 3.50286
12 3.815241 3.815241 3.815375
13 4.127748 4.127748 4.127891
14 4.440406
15 4752921
16 5.065436
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Figure 8. Firing spread in the optimized 3D network. Activated neuronsare
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below.
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CHAPTER 4

DISCUSSION

The model coral nerve network with the parameteusid by optimizing first the
single neuron, then the single neuron and netwar&rmeters, reproduced experimentally
observed behavior. In response to repetitive satian, the diameter of the activity

increased in a linear manner, as experimentallgmies inPalythoa(Figure 1b).

GAs were previously been used for optimizing oriygke-cell parameters (Stiefel
and Sejnowski 2007; Achard De Schutter 2006). Weehauccessfully extended this
approach to optimize the parameters of a model cetaal net. This successful optimization
shows that the behavioral output of an animal'spdeta nervous system can be modeled
with a few assumptions and that all parametersuchsa model can be found within
reasonable computing time. The relatively simplaucdtire of the coelenterate nervous

system makes this possible for the linear radiedaq of firing behavior.

The optimized network tends to exhibit a radialesgl of excitation with constant
velocity for a variety of connection weight and aleparameters. Holding the conductance
and delay parameters constant and decreasing tireection weight result in a marginal
decrease in velocity of spread between only thewsdsited neuron and the first order
neighbors on the order of a few milliseconds. Vi&Joof spread between successive
neighbors is not affected. Systematically varyihg tdelay parameter while holding the

conductance parameters constant shows that theityetd spread is linearly related to the
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magnitude of the delay parameter (Figure 9) foradety of connection weights. These
results suggest that the radial spread of firinthwonstant velocity is robust and preserved
for a variety of connection weights and delay pastars. Optimizing for a radial spread of

firing with acceleration of velocity is a futurerection of this work.

Velocity of Radial Spread of Firing

600

500 /

400 /

300

/ © Data

200 — Linear (Data)
y=5x+0.060

RZ=1
100

0 20 40 60 80 100 120

(ms)

Time required to increase radius of firing by 1 neuron

Delay Multiplier

Figure 9. Veocity of Spread of Firing. Data collected from 2D network (11x11)
with delay multiplier varied from 0to 100 in incrementsof 1. Therate of
increasein velocity of spread with respect to the delay multiplier isequal to the
modeled distance between neurons (5 pm).
In the future, we will aim to delimit the partstbie parameter space giving rise to all
three observed modes of the spread of excitatiah@pe that more empirical details of the
physiology of coral nervous systems will emergéh near future and that these data will

shed more light and allow more biologically reatishodeling of these fascinating animals

at the base of the metazoan phylogenetic tree.
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APPENDIX A

PROGRAM CODE: SETUP.HOC

/] Paraneters, create neurons

xdi st =5 /1 di stances between neurons in polyps
ydi st =5

zdi st =5

center=5

net si ze=11 /1 size of network inside polyps

popsi ze=net si ze"2

numnst at s=12
nungenes=5

e LR | oad genone fromfile
obj ref genonefile, netparm
net parm = new Vect or (nhungenes)
genonefile = new File()
genonefil e.ropen("cell genome.txt")
for z=0, nungenes-1 {
net par m x[ z] =genonefil e. scanvar ()
if (netparmx[z]<0 && z!=2) {netparm x[z]=0 }
}

k=abs(net parm x[ 3] )
pwei ght =abs( net parm x[ 4])

stimnt=2 /1 Stimulus paraneters held constant
stintau=1

I e neur ons

obj ref apc[netsize][netsize], spiketinmes[netsize][netsize]
obj ref connection[netsize][netsize][ 8]

obj ref synapse[ netsize][netsize]

create neuron[netsize][netsize] /1 polyp network
forall ({ /1 every cell has Hodgi nHuxl ey currents
insert hh

gnabar _hh=net par m x[ 0]
gkbar _hh=net par m x[ 1]
el _hh=net parm x[ 2]
nseg=1

}

radi us=8. 2981221/ 2
set | engt h=8. 2981221
set di am=3. 1925001
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ABSTRACT OF THE THESIS

Optimizing a Coral Nerve Net
by
Eugenia J. Chen
Master of Science in Computational Science
San Diego State University, 2008

Coral polyps contract when electrically stimulatadl a wave of contraction travels from
the site of stimulation at a constant speed. Mooktoral nerve networks were optimized to
match one of three different experimentally obsérvehaviors. To search for model parameters
that reproduce the experimental observations, \wéegpgenetic algorithms to increasingly more
complex models of a coral nerve net. In a firsgstaf optimization, individual neurons
responded with spikes to multiple, but not singiésps of activation. In a second stage, we used
these neurons as the starting point for the opéitiin of a 2-dimensional nerve net. This
strategy yielded a network with parameters thatagypced the experimentally observed spread

of excitation.
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