Math 254: Introduction to Linear Algebra
Lecture Notes #1.2 — Matrices, Vectors, ...

Peter Blomgren,
⟨blomgren.peter@gmail.com⟩

Department of Mathematics and Statistics
Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego, CA 92182-7720

http://terminus.sdsu.edu/

Fall 2018
1. Student Learning Objectives
 - SLOs: Matrices, Vectors, ...

2. Matrices, Vectors; Gauss-Jordan Elimination
 - Matrix – Vector Notation
 - Back to Solving Linear Systems
 - Summarizing

3. Suggested Problems
 - Suggested Problems
 - Lecture–Book Roadmap

4. Supplemental Material
 - Metacognitive Reflection
 - Problem Statements 1.2

Peter Blomgren, ⟨blomgren.peter@gmail.com⟩
After this lecture you should:

- Know basic language and concepts:
 - Matrices, vectors, and their components
 - Matrix types: square, diagonal, triangular, zero, identity
 - The collection of all \(n \)-vectors, denoted \(\mathbb{R}^n \) is a vector space

- Vector addition

- Know the difference between the Coefficient matrix, and the Augmented matrix; their uses in the solution of linear systems

- Know how to use elimination to identify leading and non-leading (a.k.a. free variables), and when necessary introduce parameters to express all solutions of linear systems.

- Know what **Reduced–Row–Echelon–Form** (RREF) of a Matrix is, and how to achieve it using elementary row operations.
Our current “business” is manipulating linear systems, of the form

\[
\begin{align*}
3x + 21y - 3z &= 0 \\
-6x - 2y - z &= 62 \\
2x - 3y + 8z &= 32
\end{align*}
\]

into a form which reveals the values of \(x\), \(y\), and \(z\):

\[
\begin{align*}
x &= -\frac{3574}{281} \\
y &= \frac{844}{281} \\
z &= \frac{2334}{281}
\end{align*}
\]

We achieve this by cleverly adding/subtracting rows (equations) from each other.
Matrix Notation — “Encoding” the Information

We realize that all the important information is in the coefficients (numbers), and that the variables (x, y, z) just get carried around. We can “encode” all the information about the linear system

\[
\begin{align*}
3x & + 21y - 3z = 0 \\
-6x & - 2y - z = 62 \\
2x & - 3y + 8z = 32
\end{align*}
\]

in a matrix

\[
\begin{bmatrix}
3 & 21 & -3 & 0 \\
-6 & -2 & -1 & 62 \\
2 & -3 & 8 & 32
\end{bmatrix}
\]

or, sometimes:

\[
\begin{bmatrix}
3 & 21 & -3 & 0 \\
-6 & -2 & -1 & 62 \\
2 & -3 & 8 & 32
\end{bmatrix}
\]

Augmented Matrix

Augmented Matrix with Coefficient Matrix and right-hand-side "separated."
Row – Column Indexing

Ponder the matrix “A” with 3 rows, and 4 columns:

\[
A = \begin{bmatrix}
3 & 21 & -3 & 0 \\
-6 & -2 & -1 & 62 \\
2 & -3 & 8 & 32 \\
\end{bmatrix} = \begin{bmatrix}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34} \\
\end{bmatrix}
\]

that is, usually we refer to the entries of a matrix \(A\) (upper-case), using double subscripts \(a_{ij}\) (lower-case); the subscripts \(i\), and \(j\) are “standard” but \(r\) (row) and \(c\) (column) would be more intuitive.

Sometimes you see the notation \(A \in \mathbb{R}^{3 \times 4}\) to denote a 3-by-4 (always [\text{Rows}-by-\text{Columns}]) matrix where the entries are real (\(\mathbb{R}\)) numbers.

\textbf{Note:} The entries can be other mathematical objects, \(e.g.\) complex numbers, \(\mathbb{C}\), polynomials, etc... but we will work with \(\mathbb{R}\) for quite while.
What is a Matrix?

From a computer science point-of-view a matrix can be viewed as *data structure*, and depending on your mood (and/or preference of programming paradigm) you can think of it as e.g. a

- **2-dimensional array**,
 C/C++ :: double A[3][3]; /* A is a 3-by-3 matrix */
 C/C++ :: A[0][0] = 1; /* Assigning 1 to a_{11} */
 C/C++ :: A[2][2] = 14; /* Assigning 14 to a_{33} */
 C/C++ :: Yes, some languages count from 0 to (n-1); others from 1 to n.

- **or a container class**.
Types of Matrices

- When $A \in \mathbb{R}^{n \times n}$, i.e. the matrix has the same number of rows and columns, it is a **square matrix**

- A matrix is **diagonal** if all entries $a_{ij} = 0$ for all $i \neq j$. (Only entries of the type a_{ii} are non-zero.

- A square matrix is **upper triangular** if all entries $a_{ij} = 0$ for all $i > j$.
Types of Matrices

- A square matrix is **strictly upper triangular** if all entries \(a_{ij} = 0 \) for all \(i \geq j \).

- A square matrix is **lower triangular** if all entries \(a_{ij} = 0 \) for all \(i < j \).

- A square matrix is **strictly lower triangular** if all entries \(a_{ij} = 0 \) for all \(i \leq j \).
Types of Matrices

- A matrix where all entries are zero is (surprisingly?) called a **zero matrix**.

- A square matrix where all diagonal entries are **ones**, and the off-diagonal entries are **zeros**

 \[
 I_n = \begin{bmatrix}
 1 & 0 & \cdots & 0 & 0 \\
 0 & 1 & \cdots & 0 & 0 \\
 \vdots & \vdots & \ddots & \vdots & \vdots \\
 0 & 0 & \cdots & 1 & 0 \\
 0 & 0 & \cdots & 0 & 1 \\
 \end{bmatrix}
 \]

 is called an **identity matrix**. “\(\cdots\)” and “\(\vdots\)” denote padding with 0-entries, and “\(\ddots\)” diagonal 1-entries; filling the matrix out to its full size (whatever that may be).
Matrices of size $n \times 1$ and $1 \times n \Rightarrow \text{"Vectors"}

- A “matrix” with only one column is called a **column vector**:

 $$\vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$

- A “matrix” with only one row is called a **row vector**:

 $$\vec{w}^T = \begin{bmatrix} w_1 & w_2 & \cdots & w_n \end{bmatrix}$$

By mathematical convention a **vector** is a **column vector**; so \vec{v} and \vec{w} are (column) vectors. The notation \vec{w}^T is the **transpose** of the vector \vec{w} into a **row vector**.
The entries of a vector are called its **components**; v_k is the k^{th} component of the vector \vec{v}.

The set (collection) of all (column) vectors with n components is denoted by \mathbb{R}^n; we refer to \mathbb{R}^n as a vector space.

It is easy to visualize vectors in \mathbb{R}^2; we can think of the vector \vec{v} as an arrow from the origin $(0, 0)$ to the point $(x, y) = (v_1, v_2)$:

In the figure we have

\[
\begin{align*}
\vec{u} &= \begin{bmatrix} 1 \\ 2 \end{bmatrix}, & \vec{v} &= \begin{bmatrix} 1 \\ 3 \end{bmatrix}, & \vec{w} &= \begin{bmatrix} 2 \\ 2 \end{bmatrix},
\end{align*}
\]

Without confusion, we can just let the terminal points $(x, y) = (v_1, v_2)$ represent the vectors.
Adding Vectors

With:

\[\vec{u} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \quad \vec{v} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}, \quad \vec{w} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}, \]

We can graphically show how to add vectors:

That is

\[\vec{u} + \vec{v} = \begin{bmatrix} 2 \\ 5 \end{bmatrix}, \quad \vec{u} + \vec{v} + \vec{w} = \begin{bmatrix} 4 \\ 7 \end{bmatrix}. \]
Making Use of our Matrix – Vector Notation

Now, given a linear system:

\[
\begin{bmatrix}
2x + 8y + 4z &= 2 \\
2x + 5y + z &= 5 \\
4x + 10y - z &= 1
\end{bmatrix}
\]

We can extract the **Coefficient Matrix** (containing the coefficients of the unknown variables in the system)

\[
\begin{bmatrix}
2 & 8 & 4 \\
2 & 5 & 1 \\
4 & 10 & -1
\end{bmatrix},
\]

or the **augmented matrix**

\[
\begin{bmatrix}
2 & 8 & 4 & 2 \\
2 & 5 & 1 & 5 \\
4 & 10 & -1 & 1
\end{bmatrix},
\]

which captures all the information in the linear system.
The Augmented Matrix

Often, we separate the coefficients from the right-hand-side information in the Augmented Matrix:

\[
\begin{bmatrix}
2 & 8 & 4 & 2 \\
2 & 5 & 1 & 5 \\
4 & 10 & -1 & 1 \\
\end{bmatrix}
\sim
\begin{bmatrix}
2 & 8 & 4 & 2 \\
2 & 5 & 1 & 5 \\
4 & 10 & -1 & 1 \\
\end{bmatrix}
\]
Solving Linear Systems Using the Augmented Matrix

We can solve the linear system by manipulating the Augmented Matrix:

\[
\begin{bmatrix}
2 & 8 & 4 & 2 \\
2 & 5 & 1 & 5 \\
4 & 10 & -1 & 1
\end{bmatrix}
/ 2
\]

\[
\begin{bmatrix}
1 & 4 & 2 & 1 \\
2 & 5 & 1 & 5 \\
4 & 10 & -1 & 1
\end{bmatrix}
-2r_1
\]

\[
\begin{bmatrix}
1 & 4 & 2 & 1 \\
0 & -3 & -3 & 3 \\
0 & -6 & -9 & -3
\end{bmatrix}
/ (-3)
\]
Solving Linear Systems Using the Augmented Matrix

\[
\begin{bmatrix}
1 & 4 & 2 & | & 1 \\
0 & 1 & 1 & | & -1 \\
0 & 2 & 3 & | & 1 \\
\end{bmatrix} - 2r_2
\]

\[
\begin{bmatrix}
1 & 4 & 2 & | & 1 \\
0 & 1 & 1 & | & -1 \\
0 & 0 & 1 & | & 3 \\
\end{bmatrix} - r_3
\]

\[
\begin{bmatrix}
1 & 4 & 0 & | & -5 \\
0 & 1 & 0 & | & -4 \\
0 & 0 & 1 & | & 3 \\
\end{bmatrix} - 4r_2
\]

\[
\begin{bmatrix}
1 & 0 & 0 & | & 11 \\
0 & 1 & 0 & | & -4 \\
0 & 0 & 1 & | & 3 \\
\end{bmatrix}, \quad \begin{bmatrix}
x \\
y \\
z \\
\end{bmatrix} = \begin{bmatrix}
11 \\
-4 \\
3 \\
\end{bmatrix}
\]
The (Math) World is not limited to 2, or 3 Variables (Dimensions)

We can (easily?) imagine a system of 4 linear equations with 7 unknowns:

$$
\begin{align*}
\begin{vmatrix}
\mathbf{x}_1 & - \mathbf{x}_2 & \mathbf{x}_3 & \mathbf{x}_4 & \mathbf{x}_5 & \mathbf{x}_6 & \mathbf{x}_7 \\
-\mathbf{x}_2 & + 4\mathbf{x}_5 & \mathbf{x}_3 & + 2\mathbf{x}_5 & - 777\mathbf{x}_7 & \mathbf{x}_6 & - 7\mathbf{x}_7 \\
& & & & & 777\mathbf{x}_7 & = 1 \\
& & & & & 777\mathbf{x}_7 & = 2 \\
& & & & & 77\mathbf{x}_7 & = 3 \\
& & & & & 7\mathbf{x}_7 & = 4
\end{vmatrix}
\end{align*}
$$

Peter Blomgren, ⟨blomgren.peter@gmail.com⟩
Lecture Notes #1.2 — Matrices, Vectors, ... — (18/36)
We can (easily?) imagine a system of 4 linear equations with 7 unknowns:

\[
\begin{aligned}
 x_1 &- x_2 &+ 4x_5 & & & & & & & & & & & & & & & & 7777x_7 &= 1 \\
 & & & + 2x_5 & & & & & & & & & & & & & & & & & & 777x_7 &= 2 \\
 & 77x_7 &= 3 \\
\end{aligned}
\]

so that solving for the leading variables\(^*\) gives:

\[
\begin{aligned}
 x_1 &= 1 + x_2 - 4x_5 - 7777x_7 \\
 x_3 &= 2 - 2x_5 + 777x_7 \\
 x_4 &= 3 - 77x_7 \\
 x_6 &= 4 + 7x_7
\end{aligned}
\]

\(^*\) **Leading variables** are the first ones to appear in each equation (after elimination); here \(x_1, x_3, x_4,\) and \(x_6.\)
Infinitely Many Solutions

If we parameterize (the non-leading, or “free” variables): $x_2 = s$, $x_5 = t$, and $x_7 = u$, we can write the infinitely many solutions:

$$
\begin{bmatrix}
 x_1 \\
 x_2 \\
 x_3 \\
 x_4 \\
 x_5 \\
 x_6 \\
 x_7 \\
\end{bmatrix} =
\begin{bmatrix}
 1 & + & s & - & 4t & - & 7777u \\
 2 & s & - & 2t & + & 777u \\
 3 & 0 & - & 77u \\
 4 & t & + & 7u \\
\end{bmatrix}
= \begin{bmatrix}
 1 & 1 & -4 & -7777 \\
 0 & 0 & 0 & 0 \\
 2 & 0 & -2 & 777 \\
 3 & 0 & 1 & 7 \\
\end{bmatrix}
+ \begin{bmatrix}
 0 \\
 1 \\
 0 \\
 0 \\
\end{bmatrix}
+ \begin{bmatrix}
 0 \\
 0 \\
 777 \\
 1 \\
\end{bmatrix}
+ \begin{bmatrix}
 0 \\
 0 \\
 0 \\
 1 \\
\end{bmatrix}
$$

If we plug that into the original system of linear equations we see that it indeed is the (collection of) solution(s)!

Note that s, t, and u are allowed to take any values in \mathbb{R} (independent of each other)...

Peter Blomgren, ⟨blomgren.peter@gmail.com⟩
Lecture Notes #1.2 — Matrices, Vectors, ... — (19/36)
What Makes a System “Easy” to Solve?

Three properties make a system “easy” to solve:

P1 The leading coefficient in each equation is 1.

P2 The leading variable in each equation does not appear in any other equation.

P3 The leading variables appear in “natural order,” with increasing indices as we go down the system: x_1, x_3, x_4, and x_6 as opposed to any other ordering.

If/when the system does not satisfy these properties, we use elimination to get there...
Another Example...

We go straight to the Augmented Matrix:

\[
\begin{bmatrix}
2 & 4 & -2 & 2 & 4 & 2 \\
1 & 2 & -1 & 2 & 0 & 4 \\
3 & 6 & -2 & 1 & 9 & 1 \\
5 & 10 & -4 & 5 & 9 & 9
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 2 & -1 & 1 & 2 & 1 \\
1 & 2 & -1 & 2 & 0 & 4 \\
3 & 6 & -2 & 1 & 9 & 1 \\
5 & 10 & -4 & 5 & 9 & 9
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 2 & -1 & 1 & 2 & 1 \\
0 & 0 & 0 & 1 & -2 & 3 \\
0 & 0 & 1 & -2 & 3 & -2 \\
0 & 0 & 1 & 0 & -1 & 4
\end{bmatrix}
\]
Another Example...

Keeping P1, P2, P3 in mind...

\[
\begin{bmatrix}
1 & 2 & -1 & 0 & 4 & -2 \\
0 & 0 & 0 & 1 & -2 & 3 \\
0 & 0 & 1 & 0 & -1 & 4 \\
0 & 0 & 1 & 0 & -1 & 4
\end{bmatrix}
\begin{bmatrix}
+ r_3 \\
-r_3
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 2 & 0 & 0 & 3 & 2 \\
0 & 0 & 1 & -2 & 3 \\
0 & 0 & 1 & 0 & -1 & 4 \\
0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
\rightsquigarrow r_3 \\
\rightsquigarrow r_2
\end{bmatrix}
\]

leading zeros

\[
\begin{bmatrix}
1 & 2 & 0 & 0 & 3 & 2 \\
1 & 0 & -1 & 4 \\
1 & -2 & 3
\end{bmatrix}
\]

suppressed

for clarity

Peter Blomgren, ⟨blomgren.peter@gmail.com⟩
... Identifying the Solutions

\[
\begin{bmatrix}
 x_1 & x_2 & x_3 & x_4 & x_5 & \text{value} \\
 1 & 2 & 3 & 2 \\
 1 & -1 & 4 \\
 1 & -2 & 3 \\
\end{bmatrix}
\]

So that:

\[
\begin{aligned}
 x_1 &= 2 - 2x_2 - 3x_5 \\
 x_3 &= 4 + x_5 \\
 x_4 &= 3 + 2x_5 \\
\end{aligned}
\]

\[
\begin{bmatrix}
 x_1 \\
 x_2 \\
 x_3 \\
 x_4 \\
 x_5 \\
\end{bmatrix} = \begin{bmatrix}
 2 - 2s - 3t \\
 s \\
 4 + t \\
 3 + 2t \\
 t \\
\end{bmatrix} = \begin{bmatrix}
 2 \\
 0 \\
 4 \\
 3 \\
 0 \\
\end{bmatrix} + s \begin{bmatrix}
 -2 \\
 1 \\
 0 \\
 0 \\
 0 \\
\end{bmatrix} + t \begin{bmatrix}
 -3 \\
 0 \\
 1 \\
 2 \\
 1 \\
\end{bmatrix}.
\]

Parameters: \(x_2 = s, \ x_5 = t \)
Solving a System of Linear Equations

“Elimination Strategy”

We go equation-by-equation from top to bottom (i runs from 1 to n):

- For the i^{th} equation: if the leading variable is x_j with non-zero coefficient c; divide the equation by c to make the leading coefficient 1.
- Eliminate x_j from all other equations.
- Go to the next equation.

“Exit Strategy”

- If we get $0 = \text{nonzero}$ at any point; then there are no solutions. [STOP]
- If we complete without inconsistencies:
 - **rearrange** the equations so that the leading variables are in “natural order”
 - Solve each equation for the leading variable
 - Choose parameters for the **non-leading variables** [if there are any] (appropriate “alphabet soup”)
 - Express leading variables using parameters.
Reduced Row Echelon Form

After elimination according to this strategy, the matrix is in:

Reduced Row Echelon Form

A Matrix is said to be in *Reduced Row Echelon Form* if it satisfies the following conditions:

1. If a row has non-zero entries, then the first non-zero entry is a 1, called *the leading 1* (or *pivot*) of this row.
2. If a column contains a leading 1, then all other entries in that column are 0. [Elimination is Complete]
3. If a row contains a leading 1, then each row above it contains a leading 1 further to the left. [Sorting of Rows]

The last condition implies that rows of 0’s, if any, must appear at the bottom of the matrix.
We get to *Reduced Row Echelon Form* by performing

Elementary Row Operations

- Divide a row by a non-zero scalar
- Subtract a multiple of a row from another row
- Swap two rows

This strategy of solving linear systems by reduction to Reduced Row Echelon Form is referred to as *Gaussian Elimination*, or *Gauss-Jordan Elimination*.

Gauss (1777–1855), Jordan (1842–1899); but the Chinese used it loooong before that.

“Gauss-Jordan Elimination” \(\rightsquigarrow\) RREF
“Gaussian Elimination” \(\rightsquigarrow\) REF (leading variables NOT 1’s; *LU*-factorization)
Available on “Learning Glass” videos:

(1.2.1) Find all solutions to a 2-by-3 linear system using elimination.

(1.2.3) Find all solutions to a 1-by-3 linear system using elimination.

(1.2.9) Find all solutions to a 3-by-6 linear system using elimination.

(1.2.11) Find all solutions to a 4-by-4 linear system using elimination.

(1.2.18) Determine which matrices are in RREF.

(1.2.21) Find values of matrix entries so that the resulting matrix is in RREF.
Lecture – Book Roadmap

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Book, [GS5–]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>§2.2</td>
</tr>
<tr>
<td>1.2</td>
<td>§1.1, §1.3, §2.1, §2.3</td>
</tr>
</tbody>
</table>
Metacognitive Exercise — Thinking About Thinking & Learning

<table>
<thead>
<tr>
<th>I know / learned</th>
<th>Almost there</th>
<th>Huh?!?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right After Lecture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>After Thinking / Office Hours / SI-session</td>
<td></td>
<td></td>
</tr>
<tr>
<td>After Reviewing for Midterm/Final</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(1.2.1) Find all solutions to the linear system using elimination:

\[
\begin{align*}
 x + y - 2z &= 5 \\
 2x + 3y + 4z &= 2
\end{align*}
\]

(1.2.3) Find all solutions to the linear system using elimination:

\[
\begin{align*}
 x + 2y + 3z &= 4
\end{align*}
\]
(1.2.9), (1.2.11)

(1.2.9) Find all solutions to the linear system using elimination:

\[
\begin{align*}
 x_1 &+ 2x_2 & & & x_4 &+ 2x_5 &- x_6 &= 2 \\
 x_1 &+ 2x_2 & & & + x_5 &- x_6 &= 0 \\
 x_1 &+ 2x_2 &+ 2x_3 & & - x_5 &+ x_6 &= 2
\end{align*}
\]

(1.2.11) Find all solutions to the linear system using elimination:

\[
\begin{align*}
 x_1 & & & + 2x_3 &+ 4x_4 &= -8 \\
 x_2 &- 3x_3 &- x_4 &= 6 \\
 3x_1 &+ 4x_2 &- 6x_3 &+ 8x_4 &= 0 \\
 -x_2 &+ 3x_3 &+ 4x_4 &= -12
\end{align*}
\]
(1.2.18) Determine which of the matrices are in Reduced Row Echelon Form:

a. \[
\begin{bmatrix}
1 & 2 & 0 & 2 & 0 \\
0 & 0 & 1 & 3 & 0 \\
0 & 0 & 1 & 4 & 0 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}
\]

b. \[
\begin{bmatrix}
0 & 1 & 2 & 0 & 3 \\
0 & 0 & 0 & 1 & 4 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

c. \[
\begin{bmatrix}
1 & 2 & 0 & 3 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 2
\end{bmatrix}
\]

d. \[
\begin{bmatrix}
0 & 1 & 2 & 3 & 4
\end{bmatrix}
\]
(1.2.21) For which values of a, b, c, d, and e is the following matrix in reduced-row-echelon-form?

\[
\begin{bmatrix}
1 & a & b & 3 & 0 & -2 \\
0 & 0 & c & 1 & d & 3 \\
0 & e & 0 & 0 & 1 & 1
\end{bmatrix}
\]
Two Separate Websites

- **iClicker Reef**
 - https://app.reef-education.com/
 - **Reef-Account**
 - Tied to iClicker or/and Reef-app
 - Records scores

- **Blackboard at San Diego State University**
 - https://blackboard.sdsu.edu/
 - **GRADEBOOK**
Goal: Your Points in the GRADEBOOK!

How do we get there?

1. Set up a **Reef-Account**
 - Create and log into your reef-account [FREE]
 - iClicker Remote ➔ FREE account
 - iClicker Reef app:
 - $14.99 / 6 months; $23.99 / 1 year;
 - $32.99 / 2 years; $47.00 / 4 years.
 - Add your remote / app to your account
 - Gory details:
 - Once you can see your scores in the Reef “gradebook,” you can move to step 2.
Goal: Your Points in the GRADEBOOK!
How do we get there?

2. Link your Reef and Blackboard accounts
 - Log into Blackboard.
 - Go to [Math 254]
 - Click [Clicker cloud SETUP] in the left menu.
 - Sign into your Reef account from the window that opens. (Allow the popup from Blackboard)
 - Once signed in, click through to Math 254 on the reef site.

3. Email me — I’ll trigger a re-synchronization of the Reef and Blackboard gradebooks, and your scores will show up in Blackboard.