Orthogonal Transforms and Orthogonal Matrices — (1/51)
1 Student Learning Objectives
 - SLOs: Orthogonal Transformations and Orthogonal Matrices

2 Orthogonal Transformations and Orthogonal Matrices
 - Examples, and Fundamental Theorems
 - Products, Inverses, and Transposes of Orthogonal Matrices
 - Matrix of Orthogonal Projection, using Orthonormal Basis

3 Suggested Problems
 - Suggested Problems 5.3
 - Lecture–Book Roadmap

4 Supplemental Material
 - Metacognitive Reflection
 - Problem Statements 5.3
 - Orthogonal Complements: Redux
 - Orthogonal Projections: Redux
 - Least Squares Data Fitting
After this lecture you should:

- Know what Orthogonal Transformations are; and their relation to Orthonormal Bases.
- Know the Properties of Orthogonal Matrices.
- Be able to perform an Orthogonal Projection using Orthonormal Basis you have constructed.
Orthogonal Transformations

For many reasons, we tend to “like” linear transformations that preserve the length of vectors; and angles between vectors:

Definition (Orthogonal Transformations)

A linear transformation $T : \mathbb{R}^n \rightarrow \mathbb{R}^n$ is called orthogonal if it preserves the length of vectors:

$$\| T(\vec{x}) \| = \| \vec{x} \|, \ \forall \vec{x} \in \mathbb{R}^n.$$

If $T(\vec{x}) = A\vec{x}$ is an orthogonal transformation, we say that A is an orthogonal (or *unitary*, when it has complex entries) matrix.
Example: Rotations

The rotation

$$T(\vec{x'}) = \begin{bmatrix} \cos(\phi) & -\sin(\phi) \\ \sin(\phi) & \cos(\phi) \end{bmatrix} \vec{x}$$

is an orthogonal transformation from \mathbb{R}^2 to \mathbb{R}^2, and $\forall \theta$.

![Graphs showing rotations](image-url)
Example: Reflections

Consider a subspace V of \mathbb{R}^n. For a vector $\vec{x} \in \mathbb{R}^n$, the vector \(\text{ref}_V(\vec{x}) = \vec{x}^\parallel - \vec{x}^\perp \equiv 2\text{proj}_V(\vec{x}) - \vec{x}\) is the reflection of \vec{x} in V.

We show that reflections are orthogonal transformations:

By the Pythagorean theorem, we have

\[
\|\text{ref}_V(\vec{x})\|^2 = \|\vec{x}^\parallel - \vec{x}^\perp\|^2 = \|\vec{x}^\parallel\|^2 + \|\vec{x}^\perp\|^2 = \|\vec{x}\|^2
\]
Theorem (Preservation of Orthogonality)

Consider an orthogonal transformation \(T : \mathbb{R}^n \rightarrow \mathbb{R}^n \). If the vectors \(\vec{v}, \vec{w} \in \mathbb{R}^n \) are orthogonal, then so are \(T(\vec{v}) \) and \(T(\vec{w}) \).

Proof: \{Short: relies on fundamental properties/definitions\}.

By the theorem of Pythagoras, we have to show that

\[
\| T(\vec{v}) + T(\vec{w}) \|^2 = \| T(\vec{v}) \|^2 + \| T(\vec{w}) \|^2
\]

\[
\| T(\vec{v}) + T(\vec{w}) \|^2 = \| T(\vec{v} + \vec{w}) \|^2 \quad \text{[Linearity of } T]\n\]
\[
= \| \vec{v} + \vec{w} \|^2 \quad \text{[Orthogonality of } T]\n\]
\[
= \| \vec{v} \|^2 + \| \vec{w} \|^2 \quad [\vec{v} \perp \vec{w}]\n\]
\[
= \| T(\vec{v}) \|^2 + \| T(\vec{w}) \|^2 \quad \text{[Orthogonality of } T]\n\]
Theorem (Orthogonal Transformations and Orthonormal Bases)

a. A linear transformation $T : \mathbb{R}^n \to \mathbb{R}^n$ is orthogonal if and only if the vectors $T(\vec{e}_1), \ldots, T(\vec{e}_n)$ form an orthonormal basis of \mathbb{R}^n.

b. An $n \times n$ matrix A is orthogonal if and only if its columns form an orthonormal basis of \mathbb{R}^n.

Proof in supplemental slides.
Part (a).

⇒ If \(T \) is orthogonal, then, by definition, the \(T(\vec{e}_k) \) are unit vectors, and orthogonal by the previous theorem; hence a basis for \(\mathbb{R}^n \).

⇐ Conversely, suppose \(T(\vec{e}_1), \ldots, T(\vec{e}_n) \) form an orthonormal basis. Consider a vector \(\vec{x} = x_1 \vec{e}_1 + \cdots + x_n \vec{e}_n \in \mathbb{R}^n \). Then

\[
\| T(\vec{x}) \|^2 = \| x_1 T(\vec{e}_1) + \cdots + x_n T(\vec{e}_n) \|^2 \quad \text{[Linearity]}
\]

\[
= \| x_1 T(\vec{e}_1) \|^2 + \cdots + \| x_n T(\vec{e}_n) \|^2 \quad \text{[Pythagoras]}
\]

\[
= x_1^2 \| T(\vec{e}_1) \|^2 + \cdots + x_n^2 \| T(\vec{e}_n) \|^2
\]

\[
= x_1^2 + \cdots + x_n^2
\]

\[
= \| \vec{x} \|^2.
\]
Part (b).

This follows from the result from \[\text{NOTES 2.1}\] restated below...

\[\text{Theorem (The Columns of the Matrix of a Linear Transformation)}\]

Consider a linear transformation \(T : \mathbb{R}^m \to \mathbb{R}^n\). Then, the matrix of \(T\) is

\[
A = \begin{bmatrix}
T(\vec{e}_1) & T(\vec{e}_2) & \ldots & T(\vec{e}_m)
\end{bmatrix},
\]

where \(\vec{e}_i \in \mathbb{R}^m\) is the vector of all zeros, except entry \(\#i\) which is 1.
A Warning

A matrix with orthogonal columns need not be an orthogonal matrix, e.g.

\[
A = \begin{bmatrix}
4 & -3 \\
3 & 4
\end{bmatrix}.
\]

Example \((A = \begin{bmatrix} 4 & -3 \\ 3 & 4 \end{bmatrix})\)

\[
\vec{x} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad \|\vec{x}\| = \sqrt{2}, \quad A\vec{x} = \begin{bmatrix} 1 \\ 7 \end{bmatrix}, \quad \|A\vec{x}\| = \sqrt{50}
\]
Theorem (Products and Inverses of Orthogonal Matrices)

a. The product AB of two orthogonal $n \times n$ matrices A and B is orthogonal.

b. The inverse A^{-1} of an orthogonal $n \times n$ matrix A is orthogonal.

Proof: \{Short: relies on fundamental properties/definitions\}.

(a), the linear transformation $T(\vec{x}) = AB\vec{x}$ preserves length, because

$$\|T(\vec{x})\| = \|A(B\vec{x})\| = \|B\vec{x}\| = \|\vec{x}\|.$$

(b), the linear transformation $T(\vec{x}) = A^{-1}\vec{x}$ preserves length, since

$$\|A^{-1}\vec{x}\| = \|AA^{-1}\vec{x}\| = \|\vec{x}\|.$$
Example: Properties of the Transpose of an Orthonormal Matrix

Consider the orthogonal matrix A, and the matrix where the ij entry has been shifted to the ji position (B):

$$
A = \frac{1}{7} \begin{bmatrix} 2 & 6 & 3 \\ 3 & 2 & -6 \\ 6 & 3 & 2 \end{bmatrix}, \quad
B = \frac{1}{7} \begin{bmatrix} 2 & 3 & 6 \\ 6 & 2 & -3 \\ 3 & -6 & 2 \end{bmatrix}.
$$

We compute

$$
BA = \frac{1}{49} \begin{bmatrix} 49 & 0 & 0 \\ 0 & 49 & 0 \\ 0 & 0 & 49 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.
$$

The k, ℓ entry in BA is the dot product of the k^{th} row of B, and the ℓ^{th} column of A; by construction this is the dot product of the k^{th} and ℓ^{th} columns of A; since A is orthogonal this gives 1 when $k = \ell$, and 0 otherwise.
Matrix Transpose, Symmetric and Skew-symmetric Matrices

Definition (Matrix Transpose, Symmetric and Skew-symmetric Matrices)

Consider an $m \times n$ matrix A.

- The *transpose* A^T of A is the $n \times m$ matrix whose ij^{th} entry is the ji^{th} entry of A: The roles of rows and columns are reversed.
- We say that a square matrix A is *symmetric* if $A^T = A$, and
- A is called *skew-symmetric* if $A^T = -A$.

Example (Transpose)

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}, \quad A^T = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$$
Example (Symmetric 2×2 Matrices)

The symmetric 2×2 matrices are of the form

$$\begin{bmatrix} a & b \\ b & c \end{bmatrix}$$

They form a 3-dimensional subspace of $\mathbb{R}^{2\times2}$ with basis

$$\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$

Note: $\mathbb{R}^{2\times2}$ (the collection of all 2-by-2 matrices) is a linear space (formal definition on the next slide)...
Definition (Linear Space)

A Linear Space V is a set with a definition (rule) for addition “+”, and a definition (rule) for scalar multiplication; and the following must hold ($\forall u, v, w \in V, \forall c, k \in \mathbb{R}$)

a. $v + w \in V$.

b. $kv \in V$.

c. $(u + v) + w = u + (v + w)$.

d. $u + v = v + u$.

e. $\exists n \in V: u + n = u$, [Neutral Element, denoted by 0]

f. $\exists \hat{u}: u + \hat{u} = 0$; \hat{u} unique, and denoted by $-u$.

g. $k(u + v) = ku + kv$.

h. $(c + k)u = cu + ku$.

i. $c(ku) = (ck)u$.

j. $1u = u$.

In $\mathbb{R}^{2 \times 2}$, the neutral element is $n = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$.
Example (Skew-Symmetric 2×2 Matrices)

The symmetric 2×2 matrices are of the form

$$\begin{bmatrix}
0 & b \\
-b & 0
\end{bmatrix}$$

They form a 1-dimensional subspace of $\mathbb{R}^{2\times2}$ with basis

$$\left\{ \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \right\}$$

Note: $\text{dim}(\mathbb{R}^{2\times2}) = 4$; $\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$ is a basis.
Example (Transpose of a Vector)

$$\vec{v} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \Rightarrow \vec{v}^T = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$$

Theorem

If \vec{v} and \vec{w} are two (column) vectors $\in \mathbb{R}^n$, then

$$\vec{v} \cdot \vec{w} \equiv \vec{v}^T \vec{w}$$

Dot Product

"Matrix" Product
Orthogonal Matrices: A^T and A^{-1}

Theorem

Consider an $n \times n$ matrix A. The matrix A is orthogonal if and only if $A^T A = I_n$ or, equivalently, if $A^{-1} = A^T$.

Proof: \{Short: relies on fundamental properties/definitions\}.

Write A in terms of its columns:

$$A = \begin{bmatrix} \vec{v}_1 & \cdots & \vec{v}_n \end{bmatrix}$$

then

$$A^T A = \begin{bmatrix} \vec{v}_1^T \\ \vdots \\ \vec{v}_n^T \end{bmatrix} \begin{bmatrix} \vec{v}_1 & \cdots & \vec{v}_n \end{bmatrix} = \begin{bmatrix} \vec{v}_1^T \vec{v}_1 & \cdots & \vec{v}_1^T \vec{v}_n \\ \vdots & \ddots & \vdots \\ \vec{v}_n^T \vec{v}_1 & \cdots & \vec{v}_n^T \vec{v}_n \end{bmatrix}$$

this is I_n if and only if A is orthogonal.
Summary :: Orthogonal Matrices

Consider an $n \times n$ matrix A. The following statements are equivalent:

i. A is an orthogonal matrix.

ii. The transformation $T(\vec{x}) = A\vec{x}$ preserves length, that is, $\|A\vec{x}\| = \|\vec{x}\| \ \forall \vec{x} \in \mathbb{R}^n$.

iii. The columns of A form an orthonormal basis of \mathbb{R}^n.

iv. $A^TA = I_n$.

v. $A^{-1} = A^T$.

vi. A preserves the dot product, meaning that $(A\vec{x}) \cdot (A\vec{y}) = \vec{x} \cdot \vec{y}$ $\forall \vec{x}, \vec{y} \in \mathbb{R}^n$.
Theorem (Properties of the Transpose)

a. \((A + B)^T = A^T + B^T\) \(\forall A, B \in \mathbb{R}^{m \times n}\)
b. \((kA)^T = kA^T\) \(\forall A \in \mathbb{R}^{m \times n}, \forall k \in \mathbb{R}\)
c. \((AB)^T = (B^T A^T)\) \(\forall A \in \mathbb{R}^{m \times p}, \forall B \in \mathbb{R}^{p \times n}\)
d. \(\text{rank}(A) = \text{rank}(A^T)\) \(\forall \text{matrices } A\)
e. \((A^T)^{-1} = (A^{-1})^T\) \(\forall \text{invertible matrices } A\)
The Matrix of an Orthogonal Projection

We can use our expanded matrix-notation-language to express orthogonal projections.... First consider

\[\text{proj}_L(\vec{x}) = (\vec{u}_1 \cdot \vec{x})\vec{u}_1 \]

onto a line \(L \) in \(\mathbb{R}^n \); where \(\vec{u}_1 \) is a unit vector in \(L \). Think of this vector as an \(n \times 1 \) matrix, and the scalar \((\vec{u}_1 \cdot \vec{x}) \) as an \(1 \times 1 \) matrix; we can rearrange

\[\text{proj}_L(\vec{x}) = \vec{u}_1(\vec{u}_1 \cdot \vec{x}) \overset{1}{=} \vec{u}_1(\vec{u}_1^\top \vec{x}) \overset{2}{=} \vec{u}_1 \vec{u}_1^\top \vec{x} \overset{3}{=} (\vec{u}_1 \vec{u}_1^\top)\vec{x} \overset{4}{=} A\vec{x} \]

where \(A = \vec{u}_1 \vec{u}_1^\top \).

Orthogonal Transforms and Orthogonal Matrices

Suggested Problems

Examples, and Fundamental Theorems

Products, Inverses, and Transposes of Orthogonal Matrices

The Matrix of an Ortho. Projection, using an Ortho. Basis

Vector-Vector Products

New: Outer Product

\[A = \begin{bmatrix} \mathbf{u} \mathbf{v}^T \end{bmatrix} \quad \text{is known as the outer product.} \]

\[[n \times n] \times [n \times 1] \times [1 \times n] \]

Old: Inner Product / Dot Product

\[s = \begin{bmatrix} \mathbf{u}^T \mathbf{v} \end{bmatrix} \]

\[[1 \times 1] \times [1 \times n] \times [n \times 1] \]

Upcoming: Cross Product

\[q = \begin{bmatrix} \mathbf{u} \mathbf{v} \end{bmatrix}, \quad \text{or} \quad \begin{bmatrix} \mathbf{w} \end{bmatrix} = \begin{bmatrix} \mathbf{u} \mathbf{v} \end{bmatrix} \]

\[[3 \times 1] \times [3 \times 1] \times [3 \times 1], \quad [7 \times 1] \times [7 \times 1] \times [7 \times 1] \]

Peter Blomgren, ⟨blomgren.peter@gmail.com⟩

Orthogonal Transforms and Orthogonal Matrices— (23/51)
We can apply the same idea to the general projection formula

\[\text{proj}_V(\vec{x}) = (\vec{u}_1 \cdot \vec{x}) \vec{u}_1 + \cdots + (\vec{u}_n \cdot \vec{x}) \vec{u}_n \]
\[= \vec{u}_1 \vec{u}_1^T \vec{x} + \cdots + \vec{u}_n \vec{u}_n^T \vec{x} \]
\[= \left(\vec{u}_1 \vec{u}_1^T + \cdots + \vec{u}_n \vec{u}_n^T \right) \vec{x} \]

and we can also write

\[A = \begin{bmatrix} \vec{u}_1 & \cdots & \vec{u}_n \end{bmatrix} \begin{bmatrix} \vec{u}_1^T \\ \vdots \\ \vec{u}_n^T \end{bmatrix} \]

We summarize on the next slide...
Theorem (The Matrix of an Orthogonal Projection: Summary)

Consider a subspace \(V \) of \(\mathbb{R}^n \) with orthonormal basis \(\vec{q}_1, \ldots, \vec{q}_m \). The matrix \(P \) of the orthogonal projection onto \(V \) is

\[
P = QQ^T, \quad \text{where } Q = \begin{bmatrix} \vec{q}_1 & \cdots & \vec{q}_m \end{bmatrix}.
\]

Note that it is \(QQ^T \) not \(Q^TQ \)

\(P \) is symmetric — \(P^T = (QQ^T)^T = (Q^T)^TQ^T = QQ^T = P \).
In (5.2.7) [SEE LEARNING GLASS] we orthogonalized the vectors

\[\vec{v}_1 = \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix}, \quad \vec{v}_2 = \begin{bmatrix} -2 \\ 1 \\ 2 \end{bmatrix}, \quad \vec{v}_3 = \begin{bmatrix} 18 \\ 0 \\ 0 \end{bmatrix}, \]

using the Gram-Schmidt method, and got

\[\vec{q}_1 = \begin{bmatrix} 2/3 \\ 2/3 \\ 1/3 \end{bmatrix}, \quad \vec{q}_2 = \begin{bmatrix} -2/3 \\ 1/3 \\ 2/3 \end{bmatrix}, \quad \vec{q}_3 = \begin{bmatrix} 1/3 \\ -2/3 \\ 2/3 \end{bmatrix}, \]

Let’s define \(\{Q_1 \in \mathbb{R}^{3 \times 1}, Q_2 \in \mathbb{R}^{3 \times 2}, Q_3 \in \mathbb{R}^{3 \times 3}\} \)

\[Q_1 = [\vec{q}_1], \quad Q_2 = [\vec{q}_1 \ \vec{q}_2], \quad Q_3 = [\vec{q}_1 \ \vec{q}_2 \ \vec{q}_3]. \]
Now,

\[Q_1 Q_1^T = \frac{1}{9} \begin{bmatrix} 4 & 4 & 2 \\ 4 & 4 & 2 \\ 2 & 2 & 1 \end{bmatrix}, \quad Q_1^T Q_1 = \begin{bmatrix} 1 \end{bmatrix} \]

\[Q_2 Q_2^T = \frac{1}{9} \begin{bmatrix} 8 & 2 & -2 \\ 2 & 5 & 4 \\ -2 & 4 & 5 \end{bmatrix}, \quad Q_2^T Q_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \]

\[Q_3 Q_3^T = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad Q_3^T Q_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \]

Note, \(Q_1 Q_1^T \), \(Q_2 Q_2^T \), and \(Q_3 Q_3^T \) are the matrices of orthogonal projections onto a line \(\text{span}(\vec{q}_1) \), a plane \(\text{span}(\vec{q}_1, \vec{q}_2) \), and \(\mathbb{R}^3 \) \(\text{span}(\vec{q}_1, \vec{q}_2, \vec{q}_3) \).
Available on Learning Glass videos:
5.3 — 1, 2, 5, 6, 13, 15, 17, 19, 28, 32, 33, 36, 41
<table>
<thead>
<tr>
<th>Lecture</th>
<th>Book, ([GS5–])</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>§4.1, §4.2, §4.4</td>
</tr>
<tr>
<td>5.2</td>
<td>§4.1, §4.2, §4.4</td>
</tr>
<tr>
<td>5.3</td>
<td>§4.1, §4.2, §4.4</td>
</tr>
</tbody>
</table>
Metacognitive Exercise — Thinking About Thinking & Learning

<table>
<thead>
<tr>
<th>I know / learned</th>
<th>Almost there</th>
<th>Huh?!?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right After Lecture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>After Thinking / Office Hours / SI-session</td>
<td></td>
<td></td>
</tr>
<tr>
<td>After Reviewing for Midterm/Final</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(5.3.1) Is the given matrix Orthogonal?

\[A = \begin{bmatrix} 0.6 & 0.8 \\ 0.8 & 0.6 \end{bmatrix} \]

(5.3.2) Is the given matrix Orthogonal?

\[A = \begin{bmatrix} -0.8 & 0.6 \\ 0.6 & 0.8 \end{bmatrix} \]
If the $n \times n$ matrices A and B are orthogonal, are the following matrices orthogonal as well?

(5.3.5) $C = 3A$

(5.3.6) $D = -B$
If the $n \times n$ matrices A and B are symmetric, and B is invertible; are the following matrices symmetric as well?

(5.3.13) $C = 3A$

(5.3.15) $D = AB$

(5.3.17) $F = B^{-1}$

(5.3.19) $G = 2I_n + 3A - 4A^2$
Consider an $n \times n$ matrix A. Show that A is orthogonal if-and-only-if: A preserves the dot product; i.e.

$$(A\vec{x}) \cdot (A\vec{y}) = \vec{x} \cdot \vec{y}$$

for all $\vec{x}, \vec{y} \in \mathbb{R}^n$.

Hint, show:

1. $A^T A = I_n \Rightarrow (A\vec{x}) \cdot (A\vec{y}) = \vec{x} \cdot \vec{y}$
2. $(A\vec{x}) \cdot (A\vec{y}) = \vec{x} \cdot \vec{y} \Rightarrow L(\vec{x}) = A\vec{x}$ is length-preserving.
(5.3.32–a) Consider an $n \times m$ matrix A such that $A^T A = I_m$. Is it necessarily true that $AA^T = I_n$? (Explain!)

(5.3.32–b) Consider an $n \times n$ matrix A such that $A^T A = I_n$. Is it necessarily true that $AA^T = I_n$? (Explain!)

(5.3.33) Find all orthogonal 2×2 matrices.
(5.3.36) Find and orthogonal matrix of the form

\[A = \begin{bmatrix} \frac{2}{3} & \frac{1}{\sqrt{2}} & a \\ \frac{2}{3} & -\frac{1}{\sqrt{2}} & b \\ \frac{1}{3} & 0 & c \end{bmatrix} \]
(5.3.41) Find the matrix A of the orthogonal projection on the line in \mathbb{R}^n spanned by the vector

$$\tilde{1}_n = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} \in \mathbb{R}^n$$
This section provides one important answer to “why?!” we should care about orthogonality, orthogonal complements, and orthogonal projections.

We will talk about *Least Squares Solutions* to non-consistent linear systems. (From a slightly different point of view than [NOTES 5.2: SUPPLEMENT].)

The least squares formulation is useful for fitting model parameters to data and has applications in a wide range of fields: chemistry, physics, engineering, finance, economics, etc.

It is sometimes (often?) referred to as “*Linear Regression*.”
Supplemental Examples, Revisited

The Orthogonal Complement of the Image

Example (The Orthogonal Complement of $\text{im}(A)$)

Consider a subspace $V = \text{im}(A)$ of \mathbb{R}^n, where

$$A = \begin{bmatrix} \vec{v}_1 & \cdots & \vec{v}_m \end{bmatrix}.$$

Then the orthogonal complement is,

$$V^\perp = \{ \vec{x} \in \mathbb{R}^n : \vec{v} \cdot \vec{x} = 0, \, \forall \vec{v} \in V \}$$

$$= \{ \vec{x} \in \mathbb{R}^n : \vec{v}_i \cdot \vec{x} = 0, \, i = 1, \ldots, m \}$$

$$= \{ \vec{x} \in \mathbb{R}^n : \vec{v}_i^T \vec{x} = 0, \, i = 1, \ldots, m \}.$$

In other words, V^\perp is the kernel of the matrix

$$A^T = \begin{bmatrix} \vec{v}_1^T \\ \vdots \\ \vec{v}_m^T \end{bmatrix}.$$
The Orthogonal Complement of the Image

Theorem (The Orthogonal Complement of the Image)

For any matrix A,

$$(\text{im}(A))^\perp = \ker (A^T)$$
Consider the line

\[V = \text{im} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \]

Then

\[V^\perp = \ker \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \]

is the plane with equation \(x_1 + 2x_2 + 3x_3 = 0 \); as usual we can parameterize (to get a basis), and Gram-Schmidt Orthogonalize (to make it orthonormal)

\[
\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = s \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} -3 \\ 0 \\ 1 \end{bmatrix} = \hat{s} \frac{1}{\sqrt{5}} \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} + \hat{t} \frac{1}{\sqrt{70}} \begin{bmatrix} -3 \\ -6 \\ 5 \end{bmatrix}.
\]
Theorem

a. If A is an $m \times n$ matrix, then $\ker(A) = \ker(A^T A)$.

b. If A is an $m \times n$ matrix with $\ker(A) = \{\vec{0}\}$, then $A^T A$ is invertible.

Proof.

a. Clearly, the kernel of A is contained in the kernel of $A^T A$. Conversely, consider a vector $\vec{x} \in \ker(A^T A)$, so that $A^T A \vec{x} = \vec{0}$. Then, $A \vec{x}$ is in the image of A and in the kernel of A^T. Since $\ker(A^T)$ is the orthogonal complement of $\text{im}(A)$ by the previous theorem, the vector $A \vec{x}$ is $\vec{0}$, [Notes 5.1], that is, $\vec{x} \in \ker(A)$.

b. Note that $A^T A$ is an $n \times n$ matrix. By part (a), $\ker(A^T A) = \{\vec{0}\}$, and $A^T A$ is therefore invertible. [Notes 3.3]
Orthogonal Projections

Theorem

Consider a vector $\vec{x} \in \mathbb{R}^n$ and a subspace V of \mathbb{R}^n. Then, the orthogonal projection $\text{proj}_V(\vec{x})$ is the vector in V closest to \vec{x}, in that

$$\|\vec{x} - \text{proj}_V(\vec{x})\| < \|\vec{x} - \vec{v}\|, \; \forall \vec{v} \in V \setminus \text{proj}_V(\vec{x}).$$

As usual $\vec{x}^\parallel \equiv \text{proj}_V(\vec{x})$, and $\vec{x}^\perp = \vec{x} - \vec{x}^\parallel$ is the orthogonal “left-over” of \vec{x} after the projection. The distance $\|\vec{x}^\perp\|$ is the shortest distance from V to \vec{x}.

If we move, in V, a distance ϵ away from \vec{x}^\parallel, the distance from that point to \vec{x} is $\sqrt{\epsilon^2 + \|\vec{x}^\perp\|^2}$. [Pythagorean Theorem].
Consider a linear system $A\vec{x} = \vec{b}$, which is inconsistent; meaning that $\vec{b} \not\in \text{im}(A)$.

An inconsistent linear system does not have a solution (in the traditional sense).

However, we can find the \vec{x}^* which is the best candidate in that it minimizes the distance between $A\vec{x}^*$ and \vec{b} (even though that distance is not zero).

We measure that distance

$$||A\vec{x} - \vec{b}|| \equiv ||\vec{b} - A\vec{x}||$$

and call it the error, or residual.
Definition (Least-Squares Solution)

Consider a linear system

\[Ax = b, \]

where \(A \) is an \(m \times n \) matrix. A vector \(x^* \in \mathbb{R}^n \) is called a **least-squares solution** of this system if

\[\| b - Ax^* \| \leq \| b - Ax \|, \ \forall x \in \mathbb{R}^n. \]

The name **least-squares solution** comes from the fact that we are minimizing the sum-of-squares length of the error vector \(e^* = b - Ax. \)

If/When the system \(Ax = b \) is consistent the least-squares solution is the exact solution, and \(\| b - Ax^* \| = 0. \)
Finding Least-Squares Solutions

How do we hunt down this wild beast?!

- We want the least-squares solutions \vec{x}^* to $A\vec{x} = \vec{b}$

- By definition we are looking for
 \[\|\vec{b} - A\vec{x}^*\| \leq \|\vec{b} - A\vec{x}\|, \forall \vec{x} \in \mathbb{R}^n. \]

- Our projection theorem says:
 \[A\vec{x}^* = \text{proj}_V(\vec{b}), \text{ where } V = \text{im}(A). \]

- So, the error is in the orthogonal complement of $\text{im}(A)$:
 \[\vec{b} - A\vec{x}^* \in V^\perp = (\text{im}(A))^\perp = \text{ker}(A^T). \]

- Which means:
 \[A^T(\vec{b} - A\vec{x}^*) = 0 \iff A^T A\vec{x} = A^T \vec{b}. \]
Theorem (The Normal Equations)

The least-squares solutions of the system $A \vec{x} = \vec{b}$, are the exact solutions of the (consistent) system $A^T A \vec{x} = A^T \vec{b}$. The system $A^T A \vec{x} = A^T \vec{b}$ is called the normal equations of $A \vec{x} = \vec{b}$.

The case where $\ker(A) = \{\vec{0}\}$ is of particular importance, since in that case the matrix $A^T A$ is invertible, and we can give a closed form expression for the solution:
Closed Form Least Square Solutions

Theorem (Closed Form Expression for the Least Squares Solution)

If \(\ker(A) = \{ \vec{0} \} \), the linear system \(A\vec{x} = \vec{b} \) has the unique least-squares solution

\[
\vec{x}^* = (A^T A)^{-1} A^T \vec{b},
\]

and

\[
A\vec{x}^* = \text{proj}_{\text{im}(A)}(\vec{b}) = \underbrace{A(A^T A)^{-1} A^T \vec{b}}_{P},
\]

where the matrix \(P = A(A^T A)^{-1} A^T \) is the matrix of the orthogonal projection onto \(\text{im}(A) \).

Note: Just because you can write down a mathematical expression, it does not mean using it for anything practical is a good idea.
A BIG Warning!

WARNING

Whereas the least-squares solution, and orthogonal projection CAN be expressed as

\[(A^T A)^{-1} A^T \vec{b}, \text{ and } A(A^T A)^{-1} A^T \vec{b}, \text{ respectively.}\]

Anyone using these expressions outside of small homework problems are likely to run into **Big Trouble!!!**

We do not have the tools (eigenvalues) to explain why yet, but the warning stands!
So... What Should One Do?

Well, recall the Gram-Schmidt Process, and the QR-factorization...

If we have computed $QR = A$, then the following is true:

The Solution

- $A\vec{x} = \vec{b}$
- $QR\vec{x} = \vec{b}$
- Multiply by Q^T
- $Q^T Q = I_n$
- $Q^T \vec{x} = Q^T \vec{b}$
- Solve
- $\vec{x}^* = R^{-1} Q^T \vec{b}$

The Projection

- $QR\vec{x}^* = QRR^{-1} Q^T \vec{b}$
- $QR\vec{x}^* = QQ^T \vec{b}$

<table>
<thead>
<tr>
<th>use</th>
<th>not</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\vec{x}^* = R^{-1} Q^T \vec{b}$</td>
<td>$(A^T A)^{-1} A^T \vec{b}$</td>
</tr>
<tr>
<td>$\text{proj}_{\text{im}(A)}(\vec{b}) = QQ^T \vec{b}$</td>
<td>$A(A^T A)^{-1} A^T \vec{b}$</td>
</tr>
</tbody>
</table>
It makes sense to return to the Least-Squares solutions with more tools (eigenvalues) in hand; but, alas, we will run out of time this semester.

Some additional examples and discussion can be found in [Available Online]:

<table>
<thead>
<tr>
<th>Class</th>
<th>Notes#</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math 541R.I.P.</td>
<td>10, 11</td>
</tr>
<tr>
<td>Math 543</td>
<td>8, 14</td>
</tr>
<tr>
<td>Math 693a</td>
<td>22, 23, 24</td>
</tr>
</tbody>
</table>

Clearly, there’s a lot more to say...