Outline

1. Student Learning Objectives
 • SLOs: Orthogonal Transformations and Orthogonal Matrices

2. Orthogonal Transformations and Orthogonal Matrices
 • Examples, and Fundamental Theorems
 • Products, Inverses, and Transposes of Orthogonal Matrices
 • Matrix of Orthogonal Projection, using Orthonormal Basis

3. Suggested Problems
 • Suggested Problems 5.3
 • Lecture–Book Roadmap
After this lecture you should:

- Know what Orthogonal Transformations are; and their relation to Orthonormal Bases.
- Know the Properties of Orthogonal Matrices.
- Be able to perform an Orthogonal Projection using Orthonormal Basis you have constructed.
Orthogonal Transformations

For many reasons, we tend to “like” linear transformations that preserve the length of vectors; and angles between vectors:

Definition (Orthogonal Transformations)
A linear transformation $T : \mathbb{R}^n \rightarrow \mathbb{R}^n$ is called orthogonal if it preserves the length of vectors:

$$\| T(\vec{x}) \| = \| \vec{x} \|, \ \forall \vec{x} \in \mathbb{R}^n.$$

If $T(\vec{x}) = A\vec{x}$ is an orthogonal transformation, we say that A is an orthogonal (or *unitary*, when it has complex entries) matrix.
Example: Rotations

The rotation

\[
T(\vec{x}) = \begin{bmatrix}
\cos(\phi) & -\sin(\phi) \\
\sin(\phi) & \cos(\phi)
\end{bmatrix} \vec{x}
\]

is an orthogonal transformation from \(\mathbb{R}^2 \) to \(\mathbb{R}^2 \), and \(\forall \theta \).
Example: Reflections

Consider a subspace V of \mathbb{R}^n. For a vector $\vec{x} \in \mathbb{R}^n$, the vector

$$\text{ref}_V(\vec{x}) = \vec{x}^\parallel - \vec{x}^\perp \equiv 2\text{proj}_V(\vec{x}) - \vec{x}$$

is the reflection of \vec{x} in V. We show that reflections are orthogonal transformations:

By the Pythagorean theorem, we have

$$\|\text{ref}_V(\vec{x})\|^2 = \|\vec{x}^\parallel - \vec{x}^\perp\|^2 = \|\vec{x}^\parallel\|^2 + \|\vec{x}^\perp\|^2 = \|\vec{x}^\parallel\|^2 + \|\vec{x}^\perp\|^2 = \|\vec{x}\|^2$$
Preservation of Orthogonality

Theorem (Preservation of Orthogonality)

Consider an orthogonal transformation \(T : \mathbb{R}^n \rightarrow \mathbb{R}^n \). If the vectors \(\vec{v}, \vec{w} \in \mathbb{R}^n \) are orthogonal, then so are \(T(\vec{v}) \) and \(T(\vec{w}) \).

Proof.

By the theorem of Pythagoras, we have to show that

\[
\| T(\vec{v}) + T(\vec{w}) \|^2 = \| T(\vec{v}) \|^2 + \| T(\vec{w}) \|^2 :
\]

\[
\| T(\vec{v}) + T(\vec{w}) \|^2 = \| T(\vec{v} + \vec{w}) \|^2 \quad \text{[Linearity of } T]\]
\[
= \| \vec{v} + \vec{w} \|^2 \quad \text{[Orthogonality of } T]\]
\[
= \| \vec{v} \|^2 + \| \vec{w} \|^2 \quad \text{[\(\vec{v} \perp \vec{w} \)]}\]
\[
= \| T(\vec{v}) \|^2 + \| T(\vec{w}) \|^2 \quad \text{[Orthogonality of } T]\]
Orthogonal Transformations and Orthonormal Bases

Theorem (Orthogonal Transformations and Orthonormal Bases)

\textbf{a.} A linear transformation \(T : \mathbb{R}^n \rightarrow \mathbb{R}^n \) is orthogonal if and only if the vectors \(T(\vec{e}_1), \ldots, T(\vec{e}_n) \) form an orthonormal basis of \(\mathbb{R}^n \).

\textbf{b.} An \(n \times n \) matrix \(A \) is orthogonal if and only if its columns form an orthonormal basis of \(\mathbb{R}^n \).

Part (a).

\(\Rightarrow \) If \(T \) is orthogonal, then, by definition, the \(T(\vec{e}_k) \) are unit vectors, and orthogonal by the previous theorem; hence a basis for \(\mathbb{R}^n \).

\(\Leftarrow \) Conversely, suppose \(T(\vec{e}_1), \ldots, T(\vec{e}_n) \) form an orthonormal basis. Consider a vector \(\vec{x} = x_1 \vec{e}_1 + \cdots + x_n \vec{e}_n \in \mathbb{R}^n \). Then

\[
\| T(\vec{x}) \|^2 = \| x_1 T(\vec{e}_1) + \cdots + x_n T(\vec{e}_n) \|^2 \\
= \| x_1 T(\vec{e}_1) \|^2 + \cdots + \| x_n T(\vec{e}_n) \|^2 \quad \text{[by Pythagoras]} \\
= x_1^2 + \cdots + x_n^2 \\
= \| \vec{x} \|^2.
\]
Orthogonal Transforms and Orthogonal Matrices — (9/24)

Orthogonal Transformations and Orthonormal Bases

Part (b).
This follows from the result from Notes 2.1 restated below… \[\square \]

Theorem (The Columns of the Matrix of a Linear Transformation)
Consider a linear transformation \(T : \mathbb{R}^m \rightarrow \mathbb{R}^n \). Then, the matrix of \(T \) is

\[
A = \begin{bmatrix}
T(\vec{e}_1) & T(\vec{e}_2) & \cdots & T(\vec{e}_m)
\end{bmatrix},
\]

where \(\vec{e}_i \in \mathbb{R}^m \) is the vector of all zeros, except entry \(\#i \) which is 1.
A matrix with orthogonal columns need not be an orthogonal matrix, e.g.

\[A = \begin{bmatrix} 4 & -3 \\ 3 & 4 \end{bmatrix}. \]

Example (\(A = \begin{bmatrix} 4 & -3 \\ 3 & 4 \end{bmatrix} \))

\(\mathbf{x} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad \|\mathbf{x}\| = \sqrt{2}, \quad A\mathbf{x} = \begin{bmatrix} 1 \\ 7 \end{bmatrix}, \quad \|A\mathbf{x}\| = \sqrt{50} \)
Theorem (Products and Inverses of Orthogonal Matrices)

a. *The product* AB *of two orthogonal* $n \times n$ *matrices* A *and* B *is orthogonal.*

b. *The inverse* A^{-1} *of an orthogonal* $n \times n$ *matrix* A *is orthogonal.*

Proof.

In part (a), the linear transformation $T(\vec{x}) = AB\vec{x}$ preserves length, because $\| T(\vec{x}) \| = \| A(B\vec{x}) \| = \| B\vec{x} \| = \| \vec{x} \|$. In part (b), the linear transformation $T(\vec{x}) = A^{-1}\vec{x}$ preserves length, since $\| A^{-1}\vec{x} \| = \| AA^{-1}\vec{x} \| = \| \vec{x} \|$.

\[\square \]
Example: Properties of the Transpose of an Orthonormal Matrix

Consider the orthogonal matrix A, and the matrix where the ij entry has been shifted to the ji position (B):

$$A = \frac{1}{7} \begin{bmatrix} 2 & 6 & 3 \\ 3 & 2 & -6 \\ 6 & 3 & 2 \end{bmatrix}, \quad B = \frac{1}{7} \begin{bmatrix} 2 & 3 & 6 \\ 6 & 2 & -3 \\ 3 & -6 & 2 \end{bmatrix}.$$

We compute

$$BA = \frac{1}{49} \begin{bmatrix} 49 & 0 & 0 \\ 0 & 49 & 0 \\ 0 & 0 & 49 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

The k, ℓ entry in BA is the dot product of the k^{th} row of B, and the ℓ^{th} column of A; by construction this is the dot product of the k^{th} and ℓ^{th} columns of A; since A is orthogonal this gives 1 when $k = \ell$, and 0 otherwise.
Matrix Transpose, Symmetric and Skew-symmetric Matrices

Definition (Matrix Transpose, Symmetric and Skew-symmetric Matrices)

Consider an $m \times n$ matrix A.

- The *transpose* A^T of A is the $n \times m$ matrix whose ij^{th} entry is the ji^{th} entry of A: The roles of rows and columns are reversed.
- We say that a square matrix A is *symmetric* if $A^T = A$, and
- A is called *skew-symmetric* if $A^T = -A$.

Example (Transpose)

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}, \quad A^T = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$$
Example (Transpose of a Vector)

\[\vec{v} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \Rightarrow \vec{v}^T = [1 \ 2 \ 3] \]

We use this all the time:

Theorem

If \(\vec{v} \) and \(\vec{w} \) are two (column) vectors \(\in \mathbb{R}^n \), then

\[\vec{v} \cdot \vec{w} = \vec{v}^T \vec{w} \]

Dot Product \hspace{100pt} "Matrix" Product
Orthogonal Matrices: A^T and A^{-1}

Theorem

Consider an $n \times n$ matrix A. The matrix A is orthogonal if and only if $A^T A = I_n$ or, equivalently, if $A^{-1} = A^T$.

Proof.

Write A in terms of its columns:

$$A = \begin{bmatrix} \vec{v}_1 & \cdots & \vec{v}_n \end{bmatrix}$$

then

$$A^T A = \begin{bmatrix} \vec{v}_1^T \\ \vdots \\ \vec{v}_n^T \end{bmatrix} \begin{bmatrix} \vec{v}_1 & \cdots & \vec{v}_n \end{bmatrix} = \begin{bmatrix} \vec{v}_1^T \vec{v}_1 & \cdots & \vec{v}_1^T \vec{v}_n \\ \vdots & \ddots & \vdots \\ \vec{v}_n^T \vec{v}_1 & \cdots & \vec{v}_n^T \vec{v}_n \end{bmatrix}$$

this is I_n if and only if A is orthogonal.
Summary

Consider an $n \times n$ matrix A. The following statements are equivalent:

i. A is an orthogonal matrix.

ii. The transformation $T(\vec{x}) = A\vec{x}$ preserves length, that is, $\|A\vec{x}\| = \|\vec{x}\| \; \forall \vec{x} \in \mathbb{R}^n$.

iii. The columns of A form an orthonormal basis of \mathbb{R}^n.

iv. $A^TA = I_n$.

v. $A^{-1} = A^T$.

vi. A preserves the dot product, meaning that $(A\vec{x}) \cdot (A\vec{y}) = \vec{x} \cdot \vec{y}$ $\forall \vec{x}, \vec{y} \in \mathbb{R}^n$.
Properties of the Matrix Transpose

Theorem (Properties of the Transpose)

a. \((A + B)^T = A^T + B^T\) \(\forall A, B \in \mathbb{R}^{m \times n}\)

b. \((kA)^T = kA^T\) \(\forall A \in \mathbb{R}^{m \times n}, \forall k \in \mathbb{R}\)

c. \((AB)^T = (B^T A^T)\) \(\forall A \in \mathbb{R}^{m \times p}, \forall B \in \mathbb{R}^{p \times n}\)

d. \(\text{rank}(A) = \text{rank}(A^T)\) \(\forall \text{matrices } A\)

e. \((A^T)^{-1} = (A^{-1})^T\) \(\forall \text{invertible matrices } A\)
The Matrix of an Orthogonal Projection

We can use our expanded matrix-notation-language to express orthogonal projections.... First consider

\[\text{proj}_L(\vec{x}) = (\vec{u}_1 \cdot \vec{x})\vec{u}_1 \]

onto a line \(L \) in \(\mathbb{R}^n \); where \(\vec{u}_1 \) is a unit vector in \(L \). Think of this vector as an \(n \times 1 \) matrix, and the scalar \((\vec{u}_1 \cdot \vec{x})\) as an \(1 \times 1 \) matrix; we can rearrange

\[\text{proj}_L(\vec{x}) = \vec{u}_1(\vec{u}_1 \cdot \vec{x}) = \vec{u}_1(\vec{u}_1^T \vec{x}) = \vec{u}_1 \vec{u}_1^T \vec{x} = (\vec{u}_1 \vec{u}_1^T)\vec{x} = A\vec{x} \]

where \(A = \vec{u}_1 \vec{u}_1^T \).

Note: Outer Product

\[
\begin{bmatrix} A \end{bmatrix} = \begin{bmatrix} \vec{u}_1 \vec{u}_1^T \end{bmatrix} \text{ is known as the outer product.}
\]

\[
\begin{bmatrix} n \times n \end{bmatrix} = \begin{bmatrix} n \times 1 \end{bmatrix} \times \begin{bmatrix} 1 \times n \end{bmatrix}
\]
The Matrix of an Orthogonal Projection

We can apply the same idea to the general projection formula

\[
\text{proj}_V(\vec{x}) = (\vec{u}_1 \cdot \vec{x})\vec{u}_1 + \cdots + (\vec{u}_n \cdot \vec{x})\vec{u}_n
\]

\[
= \vec{u}_1\vec{u}_1^T \vec{x} + \cdots + \vec{u}_n\vec{u}_n^T \vec{x}
\]

\[
= (\vec{u}_1\vec{u}_1^T + \cdots + \vec{u}_n\vec{u}_n^T) \vec{x}
\]

and we can also write

\[
A = \begin{bmatrix} \vec{u}_1 & \cdots & \vec{u}_n \end{bmatrix} \begin{bmatrix} \vec{u}_1^T \\ \vdots \\ \vec{u}_n^T \end{bmatrix}
\]

We summarize on the next slide...
The Matrix of an Orthogonal Projection: Summary

Theorem (The Matrix of an Orthogonal Projection: Summary)

Consider a subspace V of \mathbb{R}^n with orthonormal basis $\vec{q}_1, \ldots, \vec{q}_m$. The matrix P of the orthogonal projection onto V is

$$P = QQ^T,$$

where $Q = [\vec{q}_1 \cdots \vec{q}_m]$.

P is symmetric — $P^T = (QQ^T)^T = (Q^T)^T Q^T = QQ^T = P$.

Note that it is QQ^T not $Q^T Q$.
In (5.2.7) [SEE LEARNING GLASS] we orthogonalized the vectors

\[
\vec{v}_1 = \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix}, \quad \vec{v}_2 = \begin{bmatrix} -2 \\ 1 \\ 2 \end{bmatrix}, \quad \vec{v}_3 = \begin{bmatrix} 18 \\ 0 \\ 0 \end{bmatrix},
\]

using the Gram-Schmidt method, and got

\[
\vec{q}_1 = \begin{bmatrix} 2/3 \\ 2/3 \\ 1/3 \end{bmatrix}, \quad \vec{q}_2 = \begin{bmatrix} -2/3 \\ 1/3 \\ 2/3 \end{bmatrix}, \quad \vec{q}_3 = \begin{bmatrix} 1/3 \\ -2/3 \\ 2/3 \end{bmatrix},
\]

Let’s define

\[
Q_1 = [\vec{q}_1], \quad Q_2 = [\vec{q}_1 \quad \vec{q}_2], \quad Q_3 = [\vec{q}_1 \quad \vec{q}_2 \quad \vec{q}_3]
\]
Now,

\[Q_1 Q_1^T = \frac{1}{9} \begin{bmatrix} 4 & 4 & 2 \\ 4 & 4 & 2 \\ 2 & 2 & 1 \end{bmatrix}, \quad Q_1^T Q_1 = [1] \]

\[Q_2 Q_2^T = \frac{1}{9} \begin{bmatrix} 8 & 2 & -2 \\ 2 & 5 & 4 \\ -2 & 4 & 5 \end{bmatrix}, \quad Q_2^T Q_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \]

\[Q_3 Q_3^T = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad Q_3^T Q_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \]

Note, \(Q_1 Q_1^T \), \(Q_2 Q_2^T \), and \(Q_3 Q_3^T \) are the matrices of orthogonal projections onto a line \(\text{span}(\vec{q}_1) \), a plane \(\text{span}(\vec{q}_1, \vec{q}_2) \), and \(\mathbb{R}^3 \) span(\(\vec{q}_1, \vec{q}_2, \vec{q}_3 \)).
Available on Learning Glass videos:
5.3 — 1, 2, 5, 6, 13, 15, 17, 19, 28, 32, 33, 36, 41
<table>
<thead>
<tr>
<th>Lecture</th>
<th>Book, [GS5–]</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>§4.1, §4.2, §4.4</td>
</tr>
<tr>
<td>5.2</td>
<td>§4.1, §4.2, §4.4</td>
</tr>
<tr>
<td>5.3</td>
<td>§4.1, §4.2, §4.4</td>
</tr>
</tbody>
</table>