SLOs 6.2

After this lecture you should:

- Know the Impact of Row Divisions/Swaps/Additions on the value of the Determinant
- Be familiar with computation of the Determinant of Products, Powers, Transposes, and Inverses of matrices: $\det(AB)$, $\det(A^k)$, $\det(A^T)$, and $\det(A^{-1})$
- Be able to compute the determinant using
 - Combinatorial “Pattern” approach, [Notes 6.1]
 - Row Reductions,
 - Laplace (co-factor) Expansion Method [“Traditional” Way].

Determinant of the Transpose

Consider the patterns, P which we use to define the determinant; e.g.

\[
A = \begin{bmatrix}
\ast & \ast & \ast & \ast & \ast \\
\ast & \ast & \ast & \ast & \ast \\
\ast & \ast & \ast & \ast & \ast \\
\ast & \ast & \ast & \ast & \ast \\
\ast & \ast & \ast & \ast & \ast \\
\end{bmatrix}, \quad A^T = \begin{bmatrix}
\ast & \ast & \ast & \ast & \ast \\
\ast & \ast & \ast & \ast & \ast \\
\ast & \ast & \ast & \ast & \ast \\
\ast & \ast & \ast & \ast & \ast \\
\ast & \ast & \ast & \ast & \ast \\
\end{bmatrix}
\]

- Clearly, the product of the pattern $\text{prod}(P)$ is preserved in the transposed pattern;
- The number of inversions is preserved: the down-left number and up-right number just switch roles — therefore $\text{sgn}(P^T) = \text{sgn}(P)$.
- Since this is true for all patterns we must have $\det(A^T) = \det(A)$.

Determinant of the Transpose

Theorem (Determinant of the Transpose)
If A is a square matrix, then
\[
\det(A^T) = \det(A).
\]

- This means that any property expressed in terms of columns/rows is also true for rows/columns;
- e.g. last time we saw that swapping two columns in a 3-by-3 matrix changed the sign of the determinant;
- so, by the above, it directly follows that swapping two rows in a 3-by-3 matrix also changes the sign.

Linearity of the Determinant in the Columns (Rows)

Theorem (Linearity of the Determinant in the Columns)
Consider fixed column vectors
\[
\vec{v}_1, \ldots, \vec{v}_{i-1}, \vec{v}_{i+1}, \ldots, \vec{v}_n \in \mathbb{R}^n.
\]
Then the function $T : \mathbb{R}^n \rightarrow \mathbb{R}$ defined by
\[
T(\vec{x}) = \det\left([\vec{v}_1 \ldots \vec{v}_{i-1} \vec{x} \vec{v}_{i+1} \ldots \vec{v}_n] \right)
\]
is a linear transformation.

We can convince ourselves that the theorem is indeed true...

Linearity of the Determinant in the Columns

"Proof"
- We note that $\prod(P)$ is linear in all the rows and columns, since it contains exactly one factor from each row/column.
- The determinant is a sum of all the $\prod(P_k)$ (with appropriate sign given by $\text{sgn}(P_k)$) — i.e. The determinant is a linear combination of pattern products.

We express $T(\vec{x} + \vec{y}) = T(\vec{x}) + T(\vec{y})$, and $T(k\vec{x}) = kT(\vec{x})$:
\[
\det([\vec{v}_1 \ldots \vec{x} + \vec{y} \ldots \vec{v}_n]) = \det([\vec{v}_1 \ldots \vec{x} \ldots \vec{v}_n]) + \det([\vec{v}_1 \ldots \vec{y} \ldots \vec{v}_n])
\]
\[
\det([\vec{v}_1 \ldots k\vec{x} \ldots \vec{v}_n]) = k\det([\vec{v}_1 \ldots \vec{x} \ldots \vec{v}_n])
\]

Computational Feasibility of the Determinant

Say you are faced with computing the determinant of a 32×32 matrix (not very large by modern standards).
Using the "pattern"-method, such a computation would require $31 \cdot 32! \approx 8.16 \cdot 10^{36}$ multiplications.
Now say you have access to an "exaflop computer" — which can perform 10^{18} operations / second; then your computation would only take about 10^{18} seconds... how long is that?

- 100 seconds/minute $\sim 10^{16}$ minutes
- 100 minutes/hour $\sim 10^{14}$ hours
- 100 hours/day $\sim 10^{12}$ days
- 1000 days/year $\sim 10^9$ years.
- so... only about 7% of the age of the universe.

Perfect midterm question, yeah?!?
How Fast is 10^{18} operations/s?

As of November 2016, according to https://www.top500.org/, the fastest supercomputer in the world:

<table>
<thead>
<tr>
<th>Site</th>
<th>National Supercomputing Center in Wuxi China</th>
</tr>
</thead>
<tbody>
<tr>
<td>System</td>
<td>Sunway TaihuLight - Sunway MPP, Sunway</td>
</tr>
<tr>
<td></td>
<td>SW26010 260C 1.45GHz, Sunway NRCPC</td>
</tr>
<tr>
<td>Cores</td>
<td>10,649,600</td>
</tr>
<tr>
<td>Rmax</td>
<td>93,014.6 TFlop/s</td>
</tr>
<tr>
<td>Rpeak</td>
<td>125,435.9 TFlop/s (0.125 \times 1018 Flop/s)</td>
</tr>
<tr>
<td>Power</td>
<td>15,371 kW</td>
</tr>
</tbody>
</table>

Computational Feasibility of the Determinant

Clearly “we” have to figure something out...

- We know that the determinant of an (upper) triangular matrix is the product of the diagonal entries.
- We can take a general matrix and apply row-reductions to generate an upper triangular matrix.
- Can we “glue” these ideas together?

The short answer is “yes.” The slightly longer answer requires us to figure out how the row-reduction operation change (or don’t change) the value of the determinant.

Row-Reductions and Determinants

Our three fundamental row-operations are:

1. **Row division**: Dividing a row by a non-zero scalar k.
2. **Row swap**: Swapping two rows.
3. **Row addition**: Adding (subtracting) a multiple of one row to another.

Row-Reductions and Determinants: The 2×2 Case

First, consider the 2×2 case $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, with $\det(A) = ad - bc$:

1. **Row division**: If $B = \begin{bmatrix} a/k & b/k \\ c & d \end{bmatrix}$, then
 \[
 \det(B) = \frac{ad}{k} - \frac{bc}{k} = \frac{\det(A)}{k}.
 \]
 \Rightarrow *Scaling of the Determinant*

2. **Row swap**: If $B = \begin{bmatrix} c & d \\ a & b \end{bmatrix}$, then $\det(B) = cb - da = -\det(A)$.
 \Rightarrow *Sign Change of the Determinant*

3. **Row addition**: If $B = \begin{bmatrix} a + kc & b + kd \\ c & d \end{bmatrix}$, then
 \[
 \det(B) = (a + kc)d - (b + kd)c = (ad - bc) + k(cd - dc) = \det(A).
 \]
 \Rightarrow *No Change to the Determinant*
Row-Reductions and Determinants: The $n \times n$ Case

Next, we think about extending to the $n \times n$ case:

1. **Row division:** This follows from the linearity!

2. **Row swap:** This is a bit trickier: consider swapping two adjacent rows, and think about how this impacts ALL the patterns:
 - Each pattern has exactly one member in each row.
 - The left-most entry is either in the top row (no inversion in this piece of the pattern); or in the bottom row (one inversion).
 - After swapping
 - (no inversion) \rightarrow (one inversion)
 - (one inversion) \rightarrow (no inversion)
 - Bottom line: adjacent swaps lead to a sign-flip of the determinant.

Row-Reductions and Determinants

2.b **Row swap**: OK, what about non-adjacent swaps?
 - For two rows n steps apart:
 - The Bottom row can “climb” to the top using n adjacent row-swaps;
 - then, the former Top row (now in the second row), can “sink” to the bottom location using $(n-1)$ additional adjacent row-swaps:

 $$
 \begin{bmatrix}
 \vec{r}_1^T \\
 \vec{r}_2^T \\
 \vdots \\
 \vec{r}_n^T
 \end{bmatrix}^n \sim
 \begin{bmatrix}
 \vec{r}_{n+1}^T \\
 \vec{r}_1^T \\
 \vdots \\
 \vec{r}_n^T
 \end{bmatrix}^{n-1} \sim
 \begin{bmatrix}
 \vec{r}_1^T \\
 \vec{r}_2^T \\
 \vdots \\
 \vec{r}_n^T
 \end{bmatrix}
 $$

 - We get $(2n-1) = \text{an odd number}$ of row-swaps; i.e. and odd number of sign-flips; so the value of the determinant flips.
 - Bottom line: Any row-swap leads to a sign-flip for the determinant.
 - This means that if you have two equal rows, and swap them:

 $$
 \det(A) = -\det(A),
 $$
 which means $\det(A) = 0$.

Row-Reductions and Determinants

We summarize:

Theorem (Elementary Row Operations and Determinants)

- **a.** If B is obtained from A by dividing a row of A by a scalar k, then
 $$
 \det(B) = \frac{1}{k} \det(A)
 $$

- **b.** If B is obtained from A by a row swap, then
 $$
 \det(B) = -\det(A)
 $$

- **c.** If B is obtained from A by adding a multiple of a row of A to another row, then
 $$
 \det(B) = \det(A)
 $$

Analogous results hold for elementary column operations.
Row-Reductions and Determinants

\[\det(\text{rref}(A)) \text{ and } \det(A) \]

Now, if \(\text{we in the process} \) of computing the reduced-row-echelon-form of a matrix \(A \)

- count the number of row-swaps: \(s \), and
- keep track of scalar divisions \(k_1, \ldots, k_r \),

then:

\[\det(\text{rref}(A)) = (-1)^s \frac{1}{k_1 k_2 \ldots k_r} \det(A), \]

or

\[\det(A) = (-1)^s k_1 k_2 \ldots k_r \det(\text{rref}(A)) \]

This should save us a second or two...

Computing \(\text{rref}(A) \) of a 32 \(\times \) 32 matrix will require no more than \(\approx 32^3 \approx 11,000 \) operations (which is slightly smaller than \(8.16 \cdot 10^3 \)).

Invertibility and Determinant

If \(A \) is invertible, then \(\text{rref}(A) = I_n \), so that \(\det(\text{rref}(A)) = \det(I_n) = 1 \), and

\[\det(A) = (-1)^s k_1 k_2 \ldots k_r \neq 0. \]

If \(A \) is non-invertible, then the last row of \(\text{rref}(A) \) is all zeros, and by linearity \(\det(\text{rref}(A)) = 0 \); so that \(\det(A) = 0 \).

Theorem (Invertibility and Determinant)

A square matrix \(A \) is invertible \text{ if and only if } \det(A) \neq 0.

Gauss-Jordan Elimination and the Determinant

If instead of computing \(\det(\text{rref}(A)) \), we perform elementary row operations on \(A \) to transform it into some matrix \(B \), and \(\det(B) \) is easy to compute; the same rules apply; if we performed \(s \) row swaps, and scaled rows by the factors \(k_1, \ldots, k_r \), then

\[\det(A) = (-1)^s k_1 k_2 \ldots k_r \det(B) \]

Transforming \(A \) into upper triangular form \(U \) is a popular choice, since

\[\det(U) = \prod_{k=1}^{n} u_{kk}. \]
Determinants of Products and Powers

Theorem (Determinants of Products and Powers)

If \(A \) and \(B \) are \(n \times n \) matrices, and \(m \in \mathbb{Z}^+ \) is a positive integer, then

a. \(\det(AB) = (\det(A)) (\det(B)) \), and
b. \(\det(A^m) = (\det(A))^m \).

(a.)
(i — Assume \(A \) is invertible): It is fairly straight-forward to convince yourself that the row-operations required to transform \(A \) to \(I_n \) applied to the augmented system \(\left[\begin{array}{c|c} A & AB \end{array} \right] \) gives:

\[
\text{rref} \left(\left[\begin{array}{c|c} A & AB \end{array} \right] \right) = \left[\begin{array}{c|c} I_n & B \end{array} \right] = \left[\begin{array}{c|c} I_n & B \end{array} \right]
\]

continued...

(b.)
Apply part (a.) \((m - 1)\) times to get:

\[\det(A^m) = (\det(A))^m \]

Example (Similar Matrices)

Consider two similar matrices \(A, B \); where \(S \) is an invertible matrix so that

\[AS = SB. \]

The previous theorems then says

\[\det(A) \det(S) = \det(S) \det(B), \]

so that \(\det(A) = \det(B) \).

Theorem (Determinants of Similar Matrices)

If a matrix \(A \) is similar to \(B \), then \(\det(A) = \det(B) \).

Theorem (Determinant of an Inverse)

If a matrix \(A \) is invertible, then

\[\det(A^{-1}) = \frac{1}{\det(A)} \]

Proof.
Since \(I_n = A^{-1} A, 1 = \det(I_n) = \det(A^{-1})\det(A) \).
Minors

Ponder, once again, the 3×3 case, and recall the result of Sarrus' formula

$$\text{det}(A) = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{31}$$

We can save 3 (of the 12) multiplications by writing

$$\text{det}(A) = a_{11}(a_{22}a_{33} - a_{23}a_{32}) + a_{21}(a_{13}a_{32} - a_{12}a_{33}) + a_{31}(a_{12}a_{23} - a_{13}a_{22})$$

We can recognize this as

$$\text{det}(A) = a_{11}\text{det}\begin{pmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{pmatrix} - a_{21}\text{det}\begin{pmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{pmatrix} + a_{31}\text{det}\begin{pmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{pmatrix}$$

$$= a_{11}\text{det}\begin{pmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{pmatrix} - a_{21}\text{det}\begin{pmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{pmatrix} + a_{31}\text{det}\begin{pmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{pmatrix}$$

Minors, and Laplace (co-factor) Expansion

Definition (Minors)

For an $n \times n$ matrix A, let A_{ij} be the matrix obtained by omitting the j^{th} row, and i^{th} column of A. The determinant of the $(n-1) \times (n-1)$ matrix A_{ij} is called a minor of A.

With this language, the determinant of the 3×3 matrix A:

$$\text{det}(A) = a_{11}\text{det}(A_{11}) - a_{21}\text{det}(A_{21}) + a_{31}\text{det}(A_{31}).$$

This is know as the Laplace expansion, or co-factor expansion of $\text{det}(A)$ down the first column.

We generalize this common strategy...

Suggested Problems 6.2

Available on Learning Glass videos:

6.2 — 1, 5, 7, 9, 11, 12, 13, 15
Lecture – Book Roadmap

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Book, [GS5–]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1*</td>
<td>§5.1, §5.2, §5.3</td>
</tr>
<tr>
<td>6.2</td>
<td>§5.1, §5.2, §5.3</td>
</tr>
<tr>
<td>6.3</td>
<td>§5.1, §5.2, §5.3</td>
</tr>
</tbody>
</table>

* Strang does not talk about the combinatorial (pattern) definition of the determinant.