Outline

1. Student Learning Objectives
 - SLOs: Eigen-values and vectors: Diagonalization

2. Eigenvalues and Eigenvectors
 - Introduction
 - Baby Steps...

3. Diagonalization
 - Motivating Example
 - Definitions, etc...

4. Suggested Problems
 - Suggested Problems 7.1
 - Lecture–Book Roadmap

5. Supplemental Material
 - Metacognitive Reflection
 - Problem Statements 7.1
 - Complex Analysis: Essentials for Linear Algebra

Student Learning Objectives SLOs: Eigen-values and vectors: Diagonalization

SLOs 7.1 Eigen-values and vectors: Diagonalization

After this lecture you should know how
- Matrix Diagonalization
- Similarity Transformation
- Eigenvalues, Eigenvectors, and Eigenbases
are inter-related.

\[
S^{-1} \quad A \quad S \quad D
\]

Example: Consider linear transformations \(T : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \). What do we know? — They rotate, reflect, and stretch our input space (Left panel) in various ways; two examples shown in the Center and Right panels.

An eigenvector, \(\vec{v} \), of a linear transformation is a vector whose orientation is preserved by the transformation, \(i.e. \vec{v} \parallel A\vec{v} \), \(i.e. \)

\[
A\vec{v} = \lambda \vec{v}
\]

and the scalar \(\lambda \) is the eigenvalue associated with \(\vec{v} \).
Why Should We Care About Eigenvalues?

From a "pure" linear algebra perspective, operations on eigenvectors are easy, since they are just (multiplicative) scalings.

In applications the eigenvector-eigenvalue pair describe some fundamental property of a "system" (something we are using a mathematical model to describe):

- **Vibrations**, either in strings (guitars, pianos, etc) or other structures (bridges, tall buildings): the eigenvalue is the frequency, and the eigenvector is the deformation. [Tacoma Bridge]

 (Link sponsored by “C+ Engineering LLC.”)

- In statistics, **Principal Component Analysis**, is an eigenvector-eigenvalue analysis of the correlation matrix, and is used to study large data sets, such as those encountered in data mining, chemical research, psychology, and in marketing.

Buzzwords: “Data Science,” “Big Data,” and “Page Rank.”
Motivating Example

Given the matrices

$$A = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 8 & 7 & 6 \\ 5 & 4 & 3 & 2 \end{bmatrix}$$

ponder the “fun” of

- computing:
 - A^5, $\text{rank}(A)$, $\text{det}(A)$, the basis of $\ker(A)$, and the basis of $\text{im}(A)$

- computing:
 - B^5, $\text{rank}(B)$, $\text{det}(B)$, the basis of $\ker(B)$, and the basis of $\text{im}(B)$

Motivating Example (A)

For Matrix A we can write down the answers quickly:

$$\text{rank}(A) = 3, \quad \text{det}(A) = 0$$

$$A^5 = \begin{bmatrix} (-1)^5 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1^5 & 0 \\ 0 & 0 & 0 & 2^5 \end{bmatrix} = \begin{bmatrix} (-1) & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 32 \end{bmatrix}$$

$$\ker(A) \in \text{span}\left\{ \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \right\}, \quad \text{im}(A) \in \text{span}\left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \right\}$$

Diagonalizable Matrices

Definition (Diagonalizable Matrices)

Consider a linear transformation $T(\vec{x}) = A\vec{x}$; $(T : \mathbb{R}^n \rightarrow \mathbb{R}^n)$. Then A (and/or T) is said to be diagonalizable if the matrix B of T with respect to some basis, $\mathcal{B}(\mathbb{R}^n)$ is diagonal.

By previous discussion [Notes#3.4], the matrix A is diagonalizable if and only if it is similar to some diagonal matrix B; meaning that there exists some invertible matrix S, so that

$$S^{-1}AS = B$$

is a diagonal matrix.

Definition (Diagonalization of a Matrix)

To diagonalize a square matrix A means to find an invertible matrix S and a diagonal matrix B such that $S^{-1}AS = B$.
Eigenvectors, Eigenvalues, and Eigenbases

Definition (Eigenvectors, Eigenvalues, and Eigenbases)
Consider a linear transformation \(T(x) = Ax \); \((T : \mathbb{C}^n \mapsto \mathbb{C}^n) \). A non-zero vector \(\vec{v} \in \mathbb{C}^n \) is called an eigenvector of \(A \) (and/or \(T \)) if

\[
A\vec{v} = \lambda \vec{v},
\]

for some \(\lambda \in \mathbb{C} \). This \(\lambda \) is called the eigenvalue associated with the eigenvector \(\vec{v} \).

A basis \(\vec{v}_1, \ldots, \vec{v}_n \) of \(\mathbb{C}^n \) is called an eigenbasis for \(A \) (and/or \(T \)) if the vectors \(\vec{v}_1, \ldots, \vec{v}_n \) are eigenvectors of \(A \), i.e.

\[
A\vec{v}_k = \lambda_k \vec{v}_k, \quad k = 1, \ldots, n
\]

for some scalars \(\lambda_1, \ldots, \lambda_n \).

Example \(A^k \vec{v} \) in \(\mathbb{R}^2 \)

Example (Life in \(\mathbb{R}^2 \))
Assume we have an eigenbasis \(\{\vec{v}_1, \vec{v}_2\} \), then any \(\vec{w} \in \mathbb{R}^2 \) can be written as \(\vec{w} = a_1 \vec{v}_1 + a_2 \vec{v}_2 \) for unique scalars \(a_1 \) and \(a_2 \); now

\[
A\vec{w} = A(a_1 \vec{v}_1 + a_2 \vec{v}_2) = a_1 A\vec{v}_1 + a_2 A\vec{v}_2 = a_1 \lambda_1 \vec{v}_1 + a_2 \lambda_2 \vec{v}_2
\]

doing

\[
A^k \vec{w} = A^{k-1}(A(a_1 \vec{v}_1 + a_2 \vec{v}_2)) = A^{k-1}(a_1 \lambda_1 \vec{v}_1 + a_2 \lambda_2 \vec{v}_2) = a_1 \lambda_1^k \vec{v}_1 + a_2 \lambda_2^k \vec{v}_2
\]

"Future-Proofing:"
\(\mathbb{R}^n \): if \(\vec{v}_1, \vec{v}_2 \) are eigenvectors of \(A \), and \(\vec{w} = a_1 \vec{v}_1 + a_2 \vec{v}_2 \) we have \(A^k \vec{w} = a_1 \lambda_1^k \vec{v}_1 + a_2 \lambda_2^k \vec{v}_2 \). That is the “action” is the “same” as above when restricted to \(V = \text{span} (\vec{v}_1, \vec{v}_2) \).
Example $A^k \vec{v}$ in \mathbb{R}^2

Eigenvalues and Eigenvectors
Diagonalization
Suggested Problems

Motivating Example
Definitions, etc...

Eigenbases and Diagonalization

Theorem (Eigenbases and Diagonalization)

The matrix A is diagonalizable if and only if there exists an eigenbasis for A. If $\vec{v}_1, \ldots, \vec{v}_n$ is an eigenbasis for A, with $A\vec{v}_1 = \lambda_1 \vec{v}_1, \ldots, A\vec{v}_n = \lambda_n \vec{v}_n$, then the matrices

$$S = [\vec{v}_1 \ldots \vec{v}_n], \quad \text{and} \quad B = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix}$$

will diagonalize A, meaning $S^{-1}AS = B$.

Conversely, if the matrices S and B diagonalize A, then the columns of S will form an eigenbasis for A, and the diagonal entries of B will be the associated eigenvalues.

Example of the Identity Transformation

Example $(T(\vec{x}) = I_n \vec{x} = \vec{x})$

Find all the eigenvalues and eigenvectors of the identity matrix I_n.

Solution: Since $I_n \vec{x} = 1\vec{x} \quad \forall \vec{x} \in \mathbb{R}^n,$

it follows that all $\vec{x} \in \mathbb{R}^n$ are eigenvectors of I_n with associated eigenvalues 1.

Therefore, all bases of \mathbb{R}^n are eigenbases for I_n, and clearly the already diagonal matrix I_n is diagonalizable. Any invertible S will do the trick: $S^{-1}I_nS = S^{-1}S = I_n$.

Peter Blomgren (blomgren@sdsu.edu) 7.1. Eigen-values and vectors: Diagonalization — (17/41)

Peter Blomgren (blomgren@sdsu.edu) 7.1. Eigen-values and vectors: Diagonalization — (18/41)

Peter Blomgren (blomgren@sdsu.edu) 7.1. Eigen-values and vectors: Diagonalization — (19/41)

Peter Blomgren (blomgren@sdsu.edu) 7.1. Eigen-values and vectors: Diagonalization — (20/41)
Eigenvalues of a Projection

Example (Projection: Setup)

Let \(\vec{w} = \begin{bmatrix} 4 \\ 3 \end{bmatrix} \), and consider the projection onto the line
\(L = \text{span}\{\vec{w}\} \):

\[
T(\vec{x}) = \text{proj}_L(\vec{x}) = \left(\frac{\vec{x} \cdot \vec{w}}{\|\vec{w}\|^2} \right) \vec{w} = P\vec{x}
\]

where [Notes#2.2] the projection matrix \(P \) is

\[
P = \frac{1}{25} \begin{bmatrix} 16 & 12 \\ 12 & 9 \end{bmatrix} = \begin{bmatrix} 0.64 & 0.48 \\ 0.48 & 0.36 \end{bmatrix}
\]

What About Rotations?

Example (Rotation by \(\pi/2 \) (90°))

Let \(R = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \), and \(T(\vec{x}) = R\vec{x} \) be the rotation transformation.

Now, given any \(\vec{x} \in \mathbb{R}^2 \), \(\vec{x} \) is not parallel to \(R\vec{x} \).

As long as we insist on REAL eigenvectors and REAL eigenvalues, we find none...

Matrices with real entries may have Complex eigenvalues.

Complex: The (complex) eigenvalues of the matrix above are \(0+1i \), and \(0-1i \); where \(i = \sqrt{-1} \).
Matrices with Eigenvalue 0

Core Property — Zero Eigenvalue

By definition 0 is an eigenvalue if and only if we can find a non-zero \(\vec{x} \in \mathbb{R}^n \) so that \(A\vec{x} = 0\vec{x} = \vec{0} \).

That means 0 is an eigenvalue of \(A \) if and only if \(\ker(A) \neq \{\vec{0}\} \), i.e. \(A \) is non-invertible.

We add this to our list from [Notes#2.4], [Notes#3.1], and [Notes#3.3].
Eigenvalues and Eigenvectors
Diagonalization
Suggested Problems
Suggested Problems 7.1
Lecture – Book Roadmap

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Book, [GS5–]</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>§6.1</td>
</tr>
<tr>
<td>7.2</td>
<td>§6.1, §6.2</td>
</tr>
<tr>
<td>7.3</td>
<td>§6.1, §6.2</td>
</tr>
<tr>
<td>7.5</td>
<td>§6.1, §6.2</td>
</tr>
</tbody>
</table>

Supplemental Material
Metacognitive Reflection
Problem Statements 7.1
Complex Analysis: Essentials for Linear Algebra

(7.1.1), (7.1.3), (7.1.5), (7.1.7)

(7.1.1) Let $A \in \mathbb{R}^{n \times n}$ be an invertible matrix, and \vec{v} an eigenvector of A, with associated eigenvalue λ. Is \vec{v} an eigenvector of A^3? If so, what is the eigenvalue?

(7.1.3) Let $A \in \mathbb{R}^{n \times n}$ be an invertible matrix, and \vec{v} an eigenvector of A, with associated eigenvalue λ. Is \vec{v} an eigenvector of $A + 2I_n$? If so, what is the eigenvalue?

(7.1.5) If a vector \vec{v} is an eigenvector of both $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{n \times n}$, is \vec{v} necessarily an eigenvector of $A + B$?

(7.1.7) If \vec{v} is an eigenvector of $A \in \mathbb{R}^{n \times n}$, with eigenvalue λ, what can you say about $\ker(A - \lambda I_n)$?

(7.1.15), (7.1.17), (7.1.21)

(7.1.15) Arguing geometrically, find all eigenvectors and eigenvalues of the linear transformation — Reflection about a line L in \mathbb{R}^2 — find the eigenbasis (if possible) and determine whether the transformation is diagonalizable?

(7.1.17) Arguing geometrically, find all eigenvectors and eigenvalues of the linear transformation — Counterclockwise rotation through an angle of 45° ($\pi/4$) followed by a scaling by 2 in \mathbb{R}^2 — find the eigenbasis (if possible) and determine whether the transformation is diagonalizable?

(7.1.21) Arguing geometrically, find all eigenvectors and eigenvalues of the linear transformation — Scaling by 5 in \mathbb{R}^3 — find the eigenbasis (if possible) and determine whether the transformation is diagonalizable?

Supplemental Material
Metacognitive Exercise — Thinking About Thinking & Learning
I know / learned | Almost there | Huh?!?
Right After Lecture

After Thinking / Office Hours / SI-session

After Reviewing for Quiz/Midterm/Final
Complex Multiplication

Definition (Complex Multiplication)
Let $z_1, z_2 \in \mathbb{C}$, then
\[
z_1z_2 = (a_1 + ib_1)(a_2 + ib_2) = (a_1a_2 - b_1b_2) + i(a_1b_2 + a_2b_1)
\]
this follows from the fact that $i^2 = -1$.

Note: \mathbb{C} is isomorphic to \mathbb{R}^2
Let $T : \mathbb{R}^2 \mapsto \mathbb{C}$ be the linear transformation:
\[
T \left(\begin{bmatrix} a \\ b \end{bmatrix} \right) = a + ib, \quad T^{-1}(a + ib) = \begin{bmatrix} a \\ b \end{bmatrix},
\]
that is we can interpret vectors in \mathbb{R}^2 as complex numbers (and the other way around).

Complex Conjugate

Definition (Complex Conjugate)
Given $z = (a + ib) \in \mathbb{C}$, the complex conjugate is defined by
\[
z = (a - ib), \quad \text{sometimes } z^* = (a - ib)
\]
(reversing the sign on the imaginary part). Note that this is a reflection across the real axis in the complex plane.

Hey! It’s a reflection across the real axis!
z and z^* form a **conjugate pair** of complex numbers, and
\[
z z^* = (a + ib)(a - ib) = a^2 + b^2.
\]
Polar Coordinate Representation

Polar Coordinate Representation (Modulus and Argument)
We can represent \(z = a + ib \) in terms of its length \(r \) (modulus) and angle \(\theta \) (argument); where

\[r = \text{mod}(z) = |z| = \sqrt{a^2 + b^2}, \quad \theta = \arg(z) \in [0, 2\pi) \]

where

\[\theta = \arg(z) = \begin{cases} \arctan(\frac{b}{a}) & \text{if } a > 0 \\ \arctan(\frac{b}{a}) + \pi & \text{if } a < 0 \text{ and } b \geq 0 \\ \arctan(\frac{b}{a}) - \pi & \text{if } a < 0 \text{ and } b < 0 \\ \frac{\pi}{2} & \text{if } a = 0 \text{ and } b > 0 \\ -\frac{\pi}{2} & \text{if } a = 0 \text{ and } b < 0 \\ \text{indeterminate} & \text{if } a = 0 \text{ and } b = 0. \end{cases} \]

De Moivre's Formula

\[z = r(\cos \theta + i \sin \theta) \equiv re^{i\theta}, \]

where the identity

\[e^{i\theta} = (\cos \theta + i \sin \theta) \]

is known as Euler's Formula.

Once we restrict the range of \(\theta \) to an interval of length \(2\pi \), the representation is unique. Common choices are \(\theta \in [0, 2\pi) \) [we will use this here], or \(\theta \in [-\pi, \pi) \); but \(\theta \in [\xi, \xi + 2\pi) \) for any \(\xi \in \mathbb{R} \) works (but why make life harder than necessary?!)

Multiplying in Polar Form

Example

Given \(z_1, z_2 \in \mathbb{C} \), then

\[z_1z_2 = \begin{cases} (a_1 + ib_1)(a_2 + ib_2) = (a_1a_2 - b_1b_2) + i(a_1b_2 + a_2b_1) \\ r_1e^{i\theta_1}r_2e^{i\theta_2} = (r_1r_2)e^{i(\theta_1 + \theta_2)} \\ r_1(\cos \theta_1 + i \sin \theta_1)r_2(\cos \theta_2 + i \sin \theta_2) = (r_1r_2)((\cos \theta_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2) + i(\cos \theta_1 \sin \theta_2 + \sin \theta_1 \cos \theta_2)) \end{cases} \]

these three expressions are equivalent.

Since Euler's formula says \(e^{i(\theta_1 + \theta_2)} = \cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2) \), we can restate some old painful memories:

\[
\begin{align*}
\cos(\theta_1 + \theta_2) &= \cos \theta_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2 \\
\sin(\theta_1 + \theta_2) &= \cos \theta_1 \sin \theta_2 + \sin \theta_1 \cos \theta_2
\end{align*}
\]

Bottom line, for \(z = z_1z_2 \), we have

\[|z| = |z_1||z_2|, \quad \arg(z) = \arg(z_1) + \arg(z_2) \mod 2\pi. \]

From Euler to De Moivre

From Euler’s Identity \(e^{i\theta} = (\cos \theta + i \sin \theta) \) we see that

\[(\cos \theta + i \sin \theta)^n = (e^{i\theta})^n = e^{in\theta} = \cos(n\theta) + i \sin(n\theta), \]

which is known as De Moivre’s Formula.

OK, we have enough fragments of Complex Analysis to state the key result we need prior to revisiting our Eigenvalue/Eigenvector problem space.
Fundamental Theorem of Algebra

Theorem (Fundamental Theorem of Algebra)

Any nth degree polynomial $p_n(\lambda)$ with complex coefficients\(^*\) can be written as a product of linear factors

$$p_n(\lambda) = k(\lambda - \lambda_1)(\lambda - \lambda_2)\cdots(\lambda - \lambda_n)$$

for some complex numbers $\lambda_1, \lambda_2, \ldots, \lambda_n$ and k. (The λ_k's need not be distinct).

Therefore a polynomial $p_n(\lambda)$ of degree n has precisely n complex roots if they are counted with their multiplicity.

\(^*\) Note that real coefficients are complex coefficients with zero imaginary part.