Numerical Matrix Analysis
Notes #26
GMRES

Peter Blomgren
〈blomgren@sdsu.edu〉

Department of Mathematics and Statistics
Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego, CA 92182-7720

http://terminus.sdsu.edu/

Spring 2023
(Revised: May 1, 2023)
Outline

1. **GMRES**
 - Setup and Notation
 - Moving Forward
 - Polynomial Approximation, and Convergence

2. **GMRES: Matrix Polynomials**
 - $\|p_n(A)\|
 - Example: T&B-35.1
 - Example: T&B-35.2
Arnoldi Iteration \(\mapsto A\tilde{x} = \tilde{b} \)

Last time we looked at the Arnoldi Iteration as a procedure for finding eigenvalues. Next, we leverage it to solve \(A\tilde{x} = \tilde{b} \); introducing GMRES, the “Generalized Minimal RESiduals” strategy.

Algorithm (Arnoldi Iteration)

1: \(\tilde{b} \leftarrow \text{random}(\mathbb{R}^{m \times 1}) \),
2: \(\tilde{q}_1 \leftarrow \tilde{b}/\|\tilde{b}\| \)
3: \(\text{for } n \in \{1, 2, \ldots \} \text{ do} \)
4: \(\tilde{v} \leftarrow A\tilde{q}_n \)
5: \(\text{for } j \in \{1, \ldots, n\} \text{ do} \)
6: \(h_{j,n} \leftarrow \tilde{q}_j^* \tilde{v} \)
7: \(\tilde{v} \leftarrow \tilde{v} - h_{j,n} \tilde{q}_j \)
8: \(\text{end for} \)
9: \(h_{n+1,n} \leftarrow \|\tilde{v}\| \)
10: \(\tilde{q}_{n+1} \leftarrow \tilde{v}/h_{n+1,n} \)
11: \(\text{end for} \)

TB-33.2: \(h_{n+1,n} = 0 \) (Breakdown due to Convergence)
We consider $A \in \mathbb{C}^{m \times m}$, with $\dim(\text{null}(A)) = 0$; $\vec{b} \in \mathbb{C}^m$; $K(A, \vec{b}, n) = \text{span} \left(\vec{b}, A\vec{b}, \ldots, A^{n-1}\vec{b} \right)$; and $\vec{x}_* = A^{-1}\vec{b}$ (exact solution).

At the n^{th} step, $\vec{x}_n \approx \vec{x}_*$ is the vector $\vec{x}_n \in K(A, \vec{b}, n)$ which minimizes $\| \vec{r}_n \|$, where $\vec{r}_n = (\vec{b} - A\vec{x}_n)$; i.e. each \vec{x}_n is the solution to a least squares problem over an n-dimensional (Krylov) subspace.

Many iterative optimization methods do something similar (at least in “spirit”) — seeking approximately optimal approximations in carefully nested sequences of subspaces. (See [Math 693A])
GMRES: “Obvious” Strategy

With the Krylov matrix

\[K_n = \begin{bmatrix} \vec{b} & A\vec{b} & \cdots & A^{n-1}\vec{b} \end{bmatrix}, \]

on hand, the “obvious” (ill-conditioned) way is to form

\[AK_n = \begin{bmatrix} A\vec{b} & A^2\vec{b} & \cdots & A^n\vec{b} \end{bmatrix}, \]

which has the column space \(\text{range}(AK_n) \). We seek \(\vec{c}_n \)

\[\vec{c}_n = \arg \min_{\vec{c} \in \mathbb{C}^n} \| (AK_n)\vec{c} - \vec{b} \|, \quad \text{and} \quad \vec{x}_n = K_n\vec{c}_n. \]

Note: arg min “returns” the argument-that-minimizes the given function (objective).
The “Obvious” Strategy Fails (in Finite Precision)

A Q_nR_n-factorization of AK_n would provide the necessary components of the pseudo-inverse necessary for identification of the solution to the least squares problem.

But, alas, this approach is numerically unstable, and wasteful (the R_n factor is not needed.)

Instead, we use the Arnoldi Iteration to construct Krylov Matrices Q_n, whose columns satisfy

$$\text{span}(\vec{q}_1, \vec{q}_2, \ldots, \vec{q}_n) = K(A, \vec{b}, n),$$

thus we can represent $\vec{x}_n = Q_n\vec{y}_n$ rather than $\vec{x}_n = K_n\vec{c}_n$; the associated Least Squares Problem is

$$\vec{y}_n = \arg \min_{\vec{y} \in \mathbb{C}^n} \|AQ_n\vec{y} - \vec{b}\|.$$
As stated $\tilde{y}_n = \arg\min_{\tilde{y} \in \mathbb{C}^n} \| A Q_n \tilde{y} - \tilde{b} \|$ is an $(m \times n)$-dimensional Least Squares Problem, but using the structure of Krylov subspaces, its essential dimension is reduced to $((n + 1) \times n)$:

We use the “Arnoldi relation” $A Q_n = Q_{n+1} \tilde{H}_n$ to transform the problem into

$$\tilde{y}_n = \arg\min_{\tilde{y} \in \mathbb{C}^n} \| Q_{n+1} \tilde{H}_n \tilde{y} - \tilde{b} \|,$$

multiplication by Q_{n+1}^* preserves the norm, since both $(Q_{n+1} \tilde{H}_n \tilde{y})$ and \tilde{b} are — by construction — in the column space of Q_n; we get

$$\tilde{y}_n = \arg\min_{\tilde{y} \in \mathbb{C}^n} \| \tilde{H}_n \tilde{y} - Q_{n+1}^* \tilde{b} \|.$$
Finally, by construction of Q_n^\dagger, we get $Q_{n+1}^* \vec{b} = \|\vec{b}\| \vec{e}_1$, so our problem is

$$\vec{y}_n = \arg \min_{\vec{y} \in \mathbb{C}^n} \| \tilde{H}_n \vec{y} - \beta \vec{e}_1 \|,$$

where $\beta = \|\vec{b}\|$

and $\vec{x}_n = Q_n \vec{y}_n$.

\vec{e}_1 is as usual the first standard basis vector in the appropriate space; it has a single “1” in the first component, and the remaining components are “0”.

\[\dagger\text{ span}(Q_1) = \text{span}(\vec{b})\]
GMRES Algorithm

Algorithm (GMRES)

1. \(\vec{b} \leftarrow \text{random}(\mathbb{R}^{m \times 1}) \),
2. \(\beta \leftarrow \| \vec{b} \| \)
3. \(\vec{q}_1 \leftarrow \vec{b}/\beta \)
4. **for** \(n \in \{1, 2, \ldots \} \) **do**
5. \(\vec{v} \leftarrow A\vec{q}_n \)
6. **for** \(j \in \{1, \ldots, n\} \) **do**
7. \(h_{j,n} \leftarrow \vec{q}_j^* \vec{v} \)
8. \(\vec{v} \leftarrow \vec{v} - h_{j,n} \vec{q}_j \)
9. **end for**
10. \(h_{n+1,n} \leftarrow \| \vec{v} \| \)
11. \(\vec{q}_{n+1} \leftarrow \vec{v}/h_{n+1,n} \)
12. \(\vec{y}_n \leftarrow \arg \min_{\vec{y} \in \mathbb{C}^n} \| \tilde{H}_n \vec{y} - \beta \vec{e}_1 \| \)
13. \(\vec{x}_n \leftarrow Q_n \vec{y}_n \)
14. **end for**
In each step we solve an \(((n + 1) \times n)\) Least Squares Problem with Hessenberg structure; the cost via \(QR\)-factorization is \(O(n^2)\) (exploiting the Hessenberg structure).

It is possible to save work by identifying an updating strategy for the \(Q_nR_n\) factorization of \(\tilde{H}_n\) from \(Q_{n-1}R_{n-1} = \tilde{H}_{n-1}\). The cost is then one Givens rotation* \([T&B\text{ PROBLEMS 10.4 \& 35.4}]\) and \(O(n)\) work.

* The Givens rotations are the building blocks for a slightly (50\%) more expensive alternative to the Householder reflection method for computing the \(QR\)-factorization.
Polynomial Class P_n

\[P_n = \{ \text{Polynomials of degree } \leq n, \text{ with } p(0) = 1 \}, \]

i.e. the constant coefficient $c_0 = 1$.

Just as in the Arnoldi Iteration case, we can discuss the GMRES iteration in terms of polynomial approximations:

\[\vec{x}_n = q_n(A)\vec{b} \]

where $q_n(\cdot)$ is a polynomial of degree $(n - 1)$ with coefficients from the vector $\vec{c}_n = \arg \min_{\vec{c} \in \mathbb{C}^n} \| AK_n \vec{c} - \vec{b} \|$.
With \(p_n(z) = 1 - zq_n(z) \), we have

\[
\vec{r}_n = \vec{b} - A\vec{x}_n = (I - Aq_n(A))\vec{b} = p_n(A)\vec{b},
\]

for some \(p_n \in P_n \).

GMRES solves the following problem

GMRES Approximation Problem

Find \(p_n \in P_n \) such that

\[
p_n = \arg\min_{p \in P_n} \|p(A)\vec{b}\|.
\]
Theorem

Let the GMRES iteration be applied to a matrix $A \in \mathbb{C}^{m \times m}$, then the following holds:

- **[Scale-Invariance]** If A is changed to σA for some $\sigma \in \mathbb{C}$, and \vec{b} is changed to $\sigma \vec{b}$, the residuals \vec{r}_n change to $\sigma \vec{r}_n$.

- **[Invariance under Unitary Transformations]** If A is changed to UAU^* for some unitary matrix U, and \vec{b} is changed to $U \vec{b}$, the residuals \vec{r}_n change to $U^* \vec{r}_n$.

Peter Blomgren ⟨blomgren@sdsu.edu⟩
Convergence

Theorem (GMRES Convergence Property#1: Monotonic Convergence)

\[\text{GMRES converges monotonically,} \]
\[\| \vec{r}_{n+1} \| \leq \| \vec{r}_n \|. \]

This must be the case since we are minimizing over expanding subspaces, \(i.e. \ K(A, \vec{b}, n) \subset K(A, \vec{b}, n + 1) \).

Theorem (GMRES Convergence Property#2: \(m \)-step Convergence)

\[\text{In infinite precision, GMRES converges in at most } m \text{ steps} \]
\[\| \vec{r}_m \| = 0. \]

This must be the case since \(K(A, \vec{b}, m) = \mathbb{C}^m \).
The factor that gives us more useful convergence estimates is related to the polynomial p_n:

$$\frac{\|\vec{r}_n\|}{\|\vec{b}\|} \leq \inf_{p_n \in P_n} \|p_n(A)\|,$$

which brings us back to studying matrix polynomials related to Krylov subspaces.
How small can $\|p_n(A)\|$ be?

The standard way to get bounds on the behavior of $\|p_n(A)\|$ is to study polynomials on the spectrum $\lambda(A)$.

Definition

If p is a polynomial and $S \subset \mathbb{C}$, then

$$\|p\|_S := \sup_{z \in S} |p(z)|.$$

In the case where S is a finite set of points in the complex plane, the supremum (sup) is just the maximum (max).

When A is diagonalizable $A = V \Lambda V^{-1}$, then

$$\|p(A)\| \leq \|V\| \|p(\Lambda)\| \|V^{-1}\| = \kappa(V) \|p\|_{\lambda(A)}.$$

$\kappa(V)$ is the conditioning of the Eigenbasis.
How small can \(\| p_n(A) \| \) be?

Theorem

At step \(n \) of the GMRES iteration, the residual \(\vec{r}_n \) satisfies

\[
\frac{\| \vec{r}_n \|}{\| \vec{b} \|} \leq \inf_{p_n \in P_n} \| p_n(A) \| \leq \kappa(V) \inf_{p_n \in P_n} \| p_n \|_{\lambda(A)},
\]

where \(\lambda(A) \) is the set of eigenvalues of \(A \), \(V \) is a non-singular matrix of eigenvectors (assuming \(A \) is diagonalizable), and

\[
\| p_n \|_{\lambda(A)} = \sup_{z \in \lambda(A)} | p_n(z) |.
\]

As long as \(\kappa(V) \) is not too large — i.e. the closer \(A \) is to being normal (unitarily diagonalizable) — and if polynomials \(p_n \) which decrease quickly on \(\lambda(A) \) exist, then GMRES converges quickly.
\[\|p_n(A)\| \]

Example: T&B-35.1

\[m = 256; b = \text{ones}(m,1); \]
\[A = 2*\text{eye}(m) + 0.5 * \text{randn}(m)/\sqrt{m}; \]

\[\kappa(A) = 2.065 \]

\[\kappa(V) = 216.490 \]
The eigenvalue spectrum of A is roughly contained in the disk of radius $\frac{1}{2}$, centered at $z = 2$.

$\|p(A)\|$ is approximately minimized by $p(z) = (1 - z/2)^n$;

$\lambda(I - A/2)$ is roughly contained in the disc of radius $\frac{1}{4}$, centered at $z = 0$, so the convergence rate is $\|p_n(A)\| = \|(I - A/2)^n\| \sim \frac{1}{4^n}$.

A is quite well-conditioned: $\kappa(A) = 2.065$.

A is “not too far” from normal: $\kappa(V) = 216.490$.
\begin{verbatim}
m = 256; b = ones(m,1); th = (0:(m-1))*pi / (m-1);
A = 2*eye(m) + 0.5 * randn(m)/sqrt(m) + diag(-2+2*sin(th)+i*cos(th));
\end{verbatim}

Eigenvalue Spectrum

Relative Residual

$\kappa(A) = 3.802$

$\kappa(V) = 150.711$
The eigenvalue spectrum of A now “surrounds” the origin.

A is quite well-conditioned: $\kappa(A) = 3.802$.

A is not too far from normal: $\kappa(V) = 150.711$.

The convergence is quite slow in this case (observed $\sim 1.23^{-n}$).

Note that the slowdown in convergence does not depend on conditioning, but on the location of the eigenvalues.

Clearly, understanding the impact of the “structure” of the eigenvalue spectrum is a non-trivial topic...
m = 256; b = ones(m,1); th = 1.5*(0:(m-1))*pi / (m-1);
A = 2*eye(m) + 0.5 * randn(m)/sqrt(m) + diag(-2+2*sin(th)+i*cos(th));

\[\kappa(A) = 3.9371 \]

\[\kappa(V) = 73.7831 \]
m = 256; b = ones(m,1); th = 1.75*(0:(m-1))*pi / (m-1);
A = 2*eye(m) + 0.5 * randn(m)/sqrt(m) + diag(-2+2*sin(th)+i*cos(th));

κ(A) = 3.7551 κ(V) = 58.6277
m = 1024; b = ones(m,1); th = 6.00*(0:(m-1))*pi / (m-1);

A = 2*eye(m) + 0.5 * randn(m)/sqrt(m) + diag(-2+(1+th/(6*pi)).*(2*sin(th)+i*cos(th)));

\[\kappa(A) = 4.7704 \]

\[\kappa(V) = 40.2912 \]