Numerical Optimization

Lecture Notes #22
Nonlinear Least Squares — Modeling, Regression and Statistics

Peter Blomgren,
⟨blomgren.peter@gmail.com⟩

Department of Mathematics and Statistics
Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego, CA 92182-7720

http://terminus.sdsu.edu/

Fall 2018
Outline

1. Nonlinear Least Squares Problems
 - Introduction
 - Example / Background

2. Special Case: Linear Least Squares
 - Quick Review / Crash Course
In least squares problems, the objective function f has a special form

$$f(\bar{x}) = \frac{1}{2} \sum_{j=1}^{m} r_j(\bar{x})^2, \quad \bar{x} \in \mathbb{R}^n$$

we refer to each r_j as a residual. We assume, for now, that $m \geq n$ so that we have more residuals than dimensions (independent variables). [OVER-DETERMINED]

The least squares formulation is useful for fitting model parameters to data and has applications in a wide range of fields: chemistry, physics, engineering, finance, economics, etc.

It answers the question “What model (in a certain class) best fits the observed data?”
The least-squares-objective has a special form, which makes it easier to solve than general non-linear minimization problems:

We assemble the \textbf{residual vector}

\[
\bar{r}(\bar{x}) = [r_1(\bar{x}), r_2(\bar{x}), \ldots, r_m(\bar{x})]^T.
\]

Hence, the objective can be written as

\[
f(\bar{x}) = \frac{1}{2} \bar{r}(\bar{x})^T \bar{r}(\bar{x}) = \frac{1}{2} \| \bar{r}(\bar{x}) \|_2^2.
\]

We are going to express the derivatives of \(f(\bar{x}) \) in terms of the \textbf{Jacobian} of \(\bar{r}(\bar{x}) \), which is the \(m \times n \) matrix of first partial derivatives defined by

\[
J(\bar{x}) = \left[\frac{\partial r_j(\bar{x})}{\partial x_i} \right]_{j=1,2,\ldots,m}^{i=1,2,\ldots,n}
\]
With the Jacobian notation we can write

\[\nabla f(\bar{x}) = \sum_{j=1}^{m} r_j(\bar{x}) \nabla r_j(\bar{x}) = J(\bar{x})^T \bar{r}(\bar{x}) \]

\[\nabla^2 f(\bar{x}) = \sum_{j=1}^{m} \nabla r_j(\bar{x}) \nabla r_j(\bar{x})^T + \sum_{j=1}^{m} r_j(\bar{x}) \nabla^2 r_j(\bar{x}) \]

\[= J(\bar{x})^T J(\bar{x}) + \sum_{j=1}^{m} r_j(\bar{x}) \nabla^2 r_j(\bar{x}) \]

Usually \(J(\bar{x}) \) can be computed explicitly without too much work. This gives us a way to get the gradient \(\nabla f(\bar{x}) \). Further, this gives us the first “half” of the Hessian \(\nabla^2 f(\bar{x}) \) for “free,” i.e. without computing any second derivatives.

In many applications, the second part of the Hessian is small. When this happens we can exploit this by approximating \(\nabla^2 f(\bar{x}) \approx J(\bar{x})^T J(\bar{x}) \) so that we have a good approximation of the Hessian, without computing any second derivatives!!!
All our previously defined minimization algorithms can be applied to the least squares problem

\[\min_{\bar{x} \in \mathbb{R}^n} f(\bar{x}) = \frac{1}{2} \min_{\bar{x} \in \mathbb{R}^n} \|\bar{r}(\bar{x})\|_2^2 \]

In essence, we just take our old algorithms, and change them to exploit the special structure of the gradient and Hessian.

Prior to hammering out all the gory details, let's take a closer look at the origins of nonlinear least-squares problems.
Example: We study the effect of a certain medication on a patient. Blood is drawn at certain times \{t_j\} after the patient takes a dose — the concentration of the medication in the patient’s blood-stream \{y_j\} is measured.

We think that the following **model** is a good description of the process

\[\Phi(\bar{x}; t) = x_1 + x_2 t + e^{-x_3 t} \]

Here, \(x_1, x_2,\) and \(x_3\) are the **parameters** of the model (to be determined), and \(t\) indicates time.

We seek to determine the parameters so that the discrepancy between the concentrations predicted by the model \(\{\Phi(\bar{x}; t_j)\}\), and the observed concentrations \(\{y_j\}\) are minimized in the least squares sense.
Figure: An illustration of the discrepancy between the model (solid blue line), and the measurements (red dots). The size of the deviation is indicated by the solid red vertical lines.
The least-squares error is measured by the objective

\[
f(\bar{x}) = \frac{1}{2} \sum_{j=1}^{m} \left[y_j - \Phi(\bar{x}; t_j) \right]^2
\]

Note that at this point \(\{t_j, y_j, \}^{m}_{j=1} \) are known, and the values \(\bar{x} \) are unknown.

By solving the least-squares-problem

\[
\bar{x}^* = \arg \min_{\bar{x} \in \mathbb{R}^n} f(\bar{x})
\]

we find the model

\[
\Phi(\bar{x}^*; t_j) = x_1^* + x_2^* t + e^{-x_3^* t}
\]

which best fits the measurements.
Possible model for Ca^{2+} ion concentration in a cardiocyte during the relaxation phase:

$$c(t) = A e^{-\alpha t} + B e^{-\beta t}.$$
The previous example (#1) is an instance of what is known as a **fixed-regressor model** in statistics. It assumes that the times \(\{t_j\} \) at which we draw blood are known to high accuracy, while the observations \(\{y_j\} \) contain “random” errors due to equipment limitations and/or human error.

The least-squares objective is by far not the only way to measuring the discrepancy, we could use

\[
\sum_{j=1}^{m} \left[y_j - \Phi(\bar{x}; t_j) \right]^{16}, \quad \text{or} \quad \sum_{j=1}^{m} \left| y_j - \Phi(\bar{x}; t_j) \right|, \quad \text{or} \quad \max_{j=1,2,\ldots,m} \left| y_j - \Phi(\bar{x}; t_j) \right|
\]

However, the sum-of-squares measure is

(i) easier to work with

(ii) (usually) the correct choice for statistical reasons...
Let ϵ_j denote the discrepancy at measurement j, i.e.

$$\epsilon_j = y_j - \Phi(\bar{x}; t_j)$$

In many cases it is reasonable to assume that the ϵ_j are independent and identically distributed ("iid"), with a variance σ^2 and probability density function $g_\sigma(\cdot)$.

This assumption will often be true, e.g. when the model accurately reflects the actual process, and when the errors do not contain a “systematic” component.

Under this assumption, the likelihood of a particular set of observations $\{y_j\}$ given that the actual parameter vector is \bar{x} is given by:

$$p(\bar{y}; \bar{x}, \sigma) = \prod_{j=1}^{m} g_\sigma(\epsilon_j)$$
Since the observations \(\{y_j\} \) are known, the *most likely* value of \(\bar{x} \) is obtained by maximizing \(p(\bar{y}; \bar{x}, \sigma) \) with respect to \(\bar{x} \). The resulting value \(\bar{x}^* \) is called the **maximum likelihood estimate** of the parameters.

When the discrepancies are assumed to be *normally distributed*, we have

\[
g_\sigma(\bar{\epsilon}) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left(-\frac{\epsilon^2}{2\sigma^2} \right)
\]

so that

\[
p(\bar{y}; \bar{x}, \sigma) = \left(2\pi\sigma^2\right)^{-m/2} \exp \left(-\frac{1}{2} \sum_{j=1}^{m} \frac{[y_j - \Phi(\bar{x}; t_j)]^2}{\sigma^2} \right)
\]

It is clear that \(p(\bar{y}; \bar{x}, \sigma) \) is maximized when the sum-of-squares \(\sum_{j=1}^{m} [y_j - \Phi(\bar{x}; t_j)]^2 \) is minimized.
Summary (Statistical motivation)

When the discrepancies are assumed to be independent, identically distributed with a normal distribution function, the maximum likelihood estimate is obtained by minimizing the sum of the squares.

These assumptions on \(\{\epsilon_j\} \) are very common, but do not describe the only situation for which the minimizer of the sum-of-squares makes statistical sense.

Disclaimer: With apologies to all real statisticians out there...
When each function $r_j(\bar{x})$ is linear, the Jacobian J is constant, and we have

$$f(\bar{x}) = \frac{1}{2} \|J\bar{x} + \bar{r}_0\|^2_2, \quad \bar{r}_0 = \bar{r}(0).$$

the gradient and Hessian are also simple expressions

$$\nabla f(\bar{x}) = J^T (J\bar{x} + \bar{r}_0), \quad \nabla^2 f(\bar{x}) = J^T J.$$

The objective is convex; solving for the stationary point $\nabla f(\bar{x}^*) = 0$ gives the system of equations

$$J^T J\bar{x}^* = -J^T \bar{r}_0,$$

this system of equations is known as the normal equations.
The linear least squares problem is of interest since many models used in practice $\Phi(\bar{x}; t)$ are linear.

The linear least squares problem is really a question of numerical linear algebra (Math 543, and Math 541), but given its importance it is worth taking a quick look at three algorithms for finding the solution.

We assume:

- $m \geq n$. (OVER-DETERMINED: More measurements than parameters)
- J has full column rank.

The Cholesky factorization $R^T R = J^T J$ (where R is $n \times n$ upper triangular, and J is $m \times n$) is guaranteed to exist when these assumptions are true.
Approach #1: Direct solution of the Normal Equations.

- Compute the coefficient matrix $J^T J$ and the right-hand-side $-J^T \bar{r}_0$.
- Compute the Cholesky factorization $R^T R = \text{cholesky}(J^T J)$ of the symmetric matrix $J^T J$.
- Perform a forward and backward substitution with the Cholesky factors to recover the solution \bar{x}^*.

This approach has one significant disadvantage. — The condition number of $J^T J$

$$\text{cond}(J^T J) = \frac{|\lambda_{\text{max}}(J^T J)|}{|\lambda_{\text{min}}(J^T J)|} = \text{cond}(J)^2 = \left[\frac{\sigma_{\text{max}}(J)}{\sigma_{\text{min}}(J)} \right]^2$$

is the square of the condition number of J.

Peter Blomgren, (blomgren.peter@gmail.com)
The relative error of the computed solution is (usually) proportional to the condition number, the fact that \(\text{cond}(J^T J) = \text{cond}(J)^2 \) is very bad news indeed when \(J \) is ill-conditioned.

Note: \(J^T J \) is essentially a Hilbert matrix.

In the worst case scenario, the Cholesky factorization may break down due to roundoff errors when \(J \) is ill-conditioned!

Approach #2: QR-factorization of \(J \) — \(J\Pi = QR \), where \(Q \) is orthonormal, and \(R \) upper triangular

Since the Euclidean norm is invariant under orthogonal transformations, we have

\[
\|J\bar{x} + \bar{r}_0\|_2 = \|U(J\bar{x} + \bar{r}_0)\|_2
\]

for any \(m \times m \) orthogonal matrix \(U \).
Suppose we perform (Math 543) a QR-factorization with column pivoting on the matrix J to obtain

$$J \Pi = Q \begin{bmatrix} R \\ 0 \end{bmatrix} = \begin{bmatrix} Q_1 & Q_2 \end{bmatrix} \begin{bmatrix} R \\ 0 \end{bmatrix} = Q_1 R_1$$

where

<table>
<thead>
<tr>
<th>Π</th>
<th>is an $n \times n$ permutation matrix (\Rightarrow orthogonal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>is $m \times m$ orthogonal</td>
</tr>
<tr>
<td>Q_1</td>
<td>is the first n columns of Q.</td>
</tr>
<tr>
<td>Q_2</td>
<td>is the remaining $(m - n)$ columns of Q.</td>
</tr>
<tr>
<td>R</td>
<td>is $n \times n$ upper triangular</td>
</tr>
</tbody>
</table>
This gives us

\[\| J\bar{x} + \bar{r}_0 \|^2_2 = \left\| \begin{bmatrix} Q_1^T \\ Q_2^T \end{bmatrix} (J \Pi \Pi^T \bar{x} + \bar{r}_0) \right\|^2_2 \]

\[= \left\| \begin{bmatrix} R \\ 0 \end{bmatrix} (\Pi^T \bar{x}) + \begin{bmatrix} Q_1^T \bar{r}_0 \\ Q_2^T \bar{r}_0 \end{bmatrix} \right\|^2_2 \]

\[= \| R (\Pi^T \bar{x}) + Q_1^T \bar{r}_0 \|^2_2 + \| Q_2^T \bar{r}_0 \|^2_2 \]

The second part is unaffected by \(\bar{x} \), but setting the first term to zero minimizes \(\| J\bar{x} + \bar{r}_0 \|^2_2 \), i.e. we find

\[\bar{x}^* = -\Pi R^{-1} Q_1^T \bar{r}_0 \]

In practice, \(R\bar{z} = -Q_1^T \bar{r}_0 \) is solved by backward substitution, and then \(\bar{x}^* = \Pi \bar{z} \).
The QR-based approach does not square the condition number of J. The relative error of the solution will be proportional to a value in the range $[\text{cond}(J), \text{cond}(J)^2]$, usually $\ll \text{cond}(J)^2$, rather than $\text{cond}(J)^2$ for the direct solution of the normal equations.

In most situations, the QR-based approach is the way to go.

However, if/when we require maximal robustness and/or want to extract more information about the sensitivity of the solution to errors in J or \bar{r}_0 we can bring out the big hammer —

Approach #3: Singular Value Decomposition (SVD) of J.

The SVD *mathematics* is known by many names: the Proper Orthogonal Decomposition (POD), the Karhunen-Loève (KL-) Decomposition *signal analysis*, Principal Component Analysis (PCA) *statistics*, Empirical Orthogonal Functions, etc...
Table: The many names, faces, and close relatives of the Singular Value Decomposition...
Table: The many names, faces, and close relatives of the Singular Value Decomposition...
The SVD of J is given by (Math 543)

$$J = U \begin{bmatrix} S \\ 0 \end{bmatrix} V^T = \begin{bmatrix} U_1 & U_2 \end{bmatrix} \begin{bmatrix} S \\ 0 \end{bmatrix} V^T = U_1 S V^T$$

where

- U is $m \times m$ orthogonal
- U_1 contains the first n columns of U
- U_2 contains the remaining $(m - n)$ columns of U
- V is $n \times n$ orthogonal
- S is $n \times n$ diagonal, with elements $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n > 0$.

Note that $J^T J = VS^2 V^T$, so that the columns of V are eigenvectors of $J^T J$ with eigenvalues σ_j^2.
Now,

\[\| J\bar{x} + \bar{r}_0 \|^2_2 = \left\| \begin{bmatrix} S & 0 \\ 0 & 0 \end{bmatrix} (V^T\bar{x}) + \begin{bmatrix} U_1^T \\ U_2^T \end{bmatrix} \bar{r}_0 \right\|_2^2 = \| S(V^T\bar{x}) + U_1^T\bar{r}_0 \|^2_2 + \| U_2^T\bar{r}_0 \|^2 \]

Again, we find the optimum by setting the first contribution to zero, i.e.

\[\bar{x}^* = VS^{-1}U_1^T\bar{r}_0 = \sum_{i=1}^{n} \frac{\bar{u}_i^T\bar{r}_0}{\sigma_i} \bar{v}_i, \]

where \(\bar{u}_i \) and \(\bar{v}_i \) are the \(i \)th columns of \(U \) and \(V \), respectively.
The expression for the optimum,

$$\bar{x}^* = \sum_{i=1}^{n} \frac{\bar{u}_i^T \bar{r}_0}{\sigma_i} \bar{v}_i,$$

gives us information about the sensitivity of \bar{x}^*. When σ_i is small, \bar{x}^* is particularly sensitive to perturbations that affect $\bar{u}_i^T \bar{r}_0$.

This information is useful when $\sigma_n/\sigma_1 \ll 1$ (J nearly rank-deficient).
Summary: Three Methods for $J^T J \bar{x}^* = -J^T \bar{r}_0$.

All three approaches are useful under the right circumstances

- Cholesky-based algorithm is particularly useful when $m \gg n$, in this case it is practical to store $J^T J$, but not J. When J is rank-deficient or ill-conditioned diagonal pivoting must be implemented to limit the propagation of round-off errors. *(This approach to be used sparingly)*

- In the QR-approach with column pivoting, ill-conditioning usually causes the elements in the lower right-hand corner of the matrix R to be much smaller than the other elements. The strategy produces a solution to a nearby problem in which J is slightly perturbed. *(This is the preferred every-day approach)*
The SVD-approach is the most robust and reliable for ill-conditioned problems. When J is actually rank deficient, some of the singular values σ_i are exactly zero. Any vector of the form

$$\bar{x}^* = \sum_{i: \sigma_i \neq 0} \frac{\bar{u}_i^T \bar{r}_0}{\sigma_i} + \sum_{i: \sigma_i = 0} \tau_i \bar{v}_i$$

(for any values τ_i) is a minimizer of the least-squares problem. Usually the minimum-norm ($\tau_i = 0$) solution is desirable. (*When J is rank-deficient, this is the only approach of the three that works*).

With these results in our tool-box, we are ready to attack the solution of the non-linear least squares problem next time.
Index

linear least squares, 15
normal equations, 15