Nonlinear Least Squares Problems — Modeling, Regression and Statistics

Peter Blomgren, ⟨blomgren.peter@gmail.com⟩

Department of Mathematics and Statistics
Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego, CA 92182-7720
http://terminus.sdsu.edu/

Fall 2016

Outline

1 Nonlinear Least Squares Problems
 - Introduction
 - Example / Background

2 Special Case: Linear Least Squares
 - Quick Review / Crash Course

Nonlinear Least Squares Problems: Introduction

In least squares problems, the objective function \(f \) has a special form
\[
 f(\bar{x}) = \frac{1}{2} \sum_{j=1}^{m} r_j(\bar{x})^2, \quad \bar{x} \in \mathbb{R}^n
\]

we refer to each \(r_j \) as a residual. We assume, for now, that \(m \geq n \) so that we have more residuals than dimensions (independent variables). [OVER-DETERMINED]

The least squares formulation is useful for fitting model parameters to data and has applications in a wide range of fields: chemistry, physics, engineering, finance, economics, etc.

It answers the question “**What model (in a certain class) best fits the observed data?**”
With the Jacobian notation we can write

\[
\nabla f(x) = \sum_{j=1}^{m} r_j(x) \nabla r_j(x) = J(x)^T \bar{r}(x)
\]

\[
\nabla^2 f(x) = \sum_{j=1}^{m} \nabla r_j(x) \nabla r_j(x)^T + \sum_{j=1}^{m} r_j(x) \nabla^2 r_j(x)
\]

= \nabla J^2(x) J(x) + \sum_{j=1}^{m} r_j(x) \nabla^2 r_j(x)

Usually \(J(x) \) can be computed explicitly without too much work. This gives us a way to get the gradient \(\nabla f(x) \). Further, this gives us the first “half” of the Hessian \(\nabla^2 f(x) \) for “free,” i.e. without computing any second derivatives.

In many applications, the second part of the Hessian is small. When this happens we can exploit this by approximating \(\nabla^2 f(x) \approx J(x)^T J(x) \) so that we have a good approximation of the Hessian, without computing any second derivatives!!

Usually \(J(x) \) can be computed explicitly without too much work. This gives us a way to get the gradient \(\nabla f(x) \). Further, this gives us the first “half” of the Hessian \(\nabla^2 f(x) \) for “free,” i.e. without computing any second derivatives.

In essence, we just take our old algorithms, and change them to exploit the special structure of the gradient and Hessian.

Prior to hammering out all the gory details, let's take a closer look at the origins of nonlinear least-squares problems.
The least-squares error is measured by the objective

$$f(\bar{x}) = \frac{1}{2} \sum_{j=1}^{m} \left[y_j - \Phi(\bar{x}; t_j) \right]^2$$

Note that at this point \(\{t_j, y_j, \}^m_{j=1}\) are known, and the values \(\bar{x}\) are unknown.

By solving the least-squares problem

$$\bar{x}^* = \arg \min_{\bar{x} \in \mathbb{R}^n} f(\bar{x})$$

we find the model

$$\Phi(\bar{x}^*; t_j) = x^*_1 + x^*_2 t + e^{-x^*_3 t}$$

which best fits the measurements.

Possible model for \(Ca^{2+}\) ion concentration in a cardiocyte during the relaxation phase:

$$c(t) = A e^{-\alpha t} + B e^{-\beta t}.$$

Let \(\epsilon_j\) denote the discrepancy at measurement \#j, i.e.

$$\epsilon_j = y_j - \Phi(\bar{x}; t_j)$$

In many cases it is reasonable to assume that the \(\epsilon_j\) are independent and identically distributed ("iid"), with a variance \(\sigma^2\) and probability density function \(g_\sigma(\cdot)\).

This assumption will often be true, e.g. when the model accurately reflects the actual process, and when the errors do not contain a "systematic" component.

Under this assumption, the likelihood of a particular set of observations \(\{y_j\}\) given that the actual parameter vector is \(\bar{x}\) is given by:

$$p(\bar{y}; \bar{x}, \sigma) = \prod_{j=1}^{m} g_\sigma(\epsilon_j)$$
Since the observations \(\{y_j\} \) are known, the most likely value of \(\bar{x} \) is obtained by maximizing \(p(\bar{y}; \bar{x}, \sigma) \) with respect to \(\bar{x} \). The resulting value \(\bar{x}^* \) is called the maximum likelihood estimate of the parameters.

When the discrepancies are assumed to be normally distributed, we have

\[
g_\sigma(\epsilon) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{\epsilon^2}{2\sigma^2}\right)
\]

so that

\[
p(\bar{y}; \bar{x}, \sigma) = [2\pi\sigma^2]^{-m/2} \exp\left(-\frac{1}{2} \sum_{j=1}^{m} \frac{(y_j - \Phi(\bar{x}, t_j))^2}{\sigma^2}\right)
\]

It is clear that \(p(\bar{y}; \bar{x}, \sigma) \) is maximized when the sum-of-squares \(\sum_{j=1}^{m} [y_j - \Phi(\bar{x}, t_j)]^2 \) is minimized.

When each function \(r_j(\bar{x}) \) is linear, the Jacobian \(J \) is constant, and we have

\[
f(\bar{x}) = \frac{1}{2} \| J\bar{x} + \bar{r} \|_2^2, \quad \bar{r} = \bar{r}(0).
\]

the gradient and Hessian are also simple expressions

\[
\nabla f(\bar{x}) = J^T(\bar{x} + \bar{r}), \quad \nabla^2 f(\bar{x}) = J^T J.
\]

The objective is convex; solving for the stationary point \(\nabla f(\bar{x}^*) = 0 \) gives the system of equations

\[
J^T J\bar{x}^* = -J^T \bar{r}_0,
\]

this system of equations is known as the normal equations.

The linear least squares problem is of interest since many models used in practice \(\Phi(\bar{x}, t) \) are linear.

The linear least squares problem is really a question of numerical linear algebra (\(\text{Math} \, 543 \), and \(\text{Math} \, 541 \)), but given its importance it is worth taking a quick look at three algorithms for finding the solution.

We assume:

- \(m \geq n \). (Over-Determined: More measurements than parameters)
- \(J \) has full column rank.

The Cholesky factorization \(R^T R = J^T J \) (where \(R \) is \(n \times n \) upper triangular, and \(J \) is \(m \times n \)) is guaranteed to exist when these assumptions are true.
Approach #1: Direct solution of the Normal Equations.
- Compute the coefficient matrix \(J^T J \) and the right-hand-side \(-J^T \bar{r}_0\).
- Compute the Cholesky factorization \(R^T R = \text{cholesky}(J^T J) \) of the symmetric matrix \(J^T J \).
- Perform a forward and backward substitution with the Cholesky factors to recover the solution \(\bar{x}^* \).

This approach has one significant disadvantage. — The condition number of \(J^T J \)

\[
\text{cond}(J^T J) = \frac{|\lambda_{\max}(J^T J)|}{|\lambda_{\min}(J^T J)|} = \text{cond}(J)^2 = \left[\frac{\sigma_{\max}(J)}{\sigma_{\min}(J)} \right]^2
\]

is the square of the condition number of \(J \).

Approach #2: QR-factorization of \(J \) — \(J \Pi = QR \), where \(Q \) is orthonormal, and \(R \) upper triangular

Since the Euclidean norm is invariant under orthogonal transformations, we have

\[
\| J \bar{x} + \bar{r}_0 \|_2 = \| U(J \bar{x} + \bar{r}_0) \|_2
\]

for any \(m \times m \) orthogonal matrix \(U \).

Suppose we perform (Math 543) a QR-factorization with column pivoting on the matrix \(J \) to obtain

\[
J \Pi = Q \begin{bmatrix} R \\ 0 \end{bmatrix} = \begin{bmatrix} Q_1 & Q_2 \end{bmatrix} \begin{bmatrix} R \\ 0 \end{bmatrix} = Q_1 R_1
\]

where

- \(\Pi \) is an \(n \times n \) permutation matrix (\(\Rightarrow \) orthogonal)
- \(Q \) is \(m \times m \) orthogonal
- \(Q_1 \) is the first \(n \) columns of \(Q \).
- \(Q_2 \) is the remaining \((m-n)\) columns of \(Q \).
- \(R \) is \(n \times n \) upper triangular

This gives us

\[
\| J \bar{x} + \bar{r}_0 \|_2 = \left\| \begin{bmatrix} Q^T \\ Q_2^T \end{bmatrix} (J \Pi \Pi^T \bar{x} + \bar{r}_0) \right\|_2^2
= \left\| \begin{bmatrix} R \\ 0 \end{bmatrix} (\Pi^T \bar{x}) + \begin{bmatrix} Q_1^T \bar{r}_0 \\ Q_2^T \bar{r}_0 \end{bmatrix} \right\|_2^2
= \| R (\Pi^T \bar{x}) + Q_1^T \bar{r}_0 \|_2^2 + \| Q_2^T \bar{r}_0 \|_2^2
\]

The second part is unaffected by \(\bar{x} \), but setting the first term to zero minimizes \(\| J \bar{x} + \bar{r}_0 \|_2 \), i.e. we find

\[
\bar{x}^* = -\Pi R^{-1} Q_1^T \bar{r}_0
\]

In practice, \(R \bar{z} = -Q_1^T \bar{r}_0 \) is solved by backward substitution, and then

\[
\bar{x}^* = \Pi \bar{z}
\]
The QR-based least squares approach does not square the condition number of J. The relative error of the solution will be proportional to a value in the range $[\text{cond}(J), \text{cond}(J)^2]$, usually $\ll \text{cond}(J)^2$, rather than $\text{cond}(J)^2$ for the direct solution of the normal equations.

In most situations, the QR-based approach is the way to go.

However, if/when we require maximal robustness and/or want to extract more information about the sensitivity of the solution to errors in J or \bar{r}, we can bring out the big hammer —

Approach #3: Singular Value Decomposition (SVD) of J.

The SVD [mathematics] is known by many names: the Proper Orthogonal Decomposition (POD), the Karhunen-Loève (KL-) Decomposition [signal analysis], Principal Component Analysis (PCA) [statistics], Empirical Orthogonal Functions, etc...

Table: The many names, faces, and close relatives of the Singular Value Decomposition...

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Principal.Component.Analysis</td>
<td>46,500</td>
<td>178,000</td>
<td>436,000</td>
<td>603,000</td>
</tr>
<tr>
<td>Singular.Value.Decomposition</td>
<td>19,800</td>
<td>71,200</td>
<td>103,000</td>
<td>135,000</td>
</tr>
<tr>
<td>Karhunen.Loeve</td>
<td>638</td>
<td>11,900</td>
<td>16,800</td>
<td>20,200</td>
</tr>
<tr>
<td>Canonical.Correlation.Analysis</td>
<td>2,420</td>
<td>10,400</td>
<td>14,100</td>
<td>19,600</td>
</tr>
<tr>
<td>Empirical.Orthogonal.(Function</td>
<td>Functions</td>
<td>2,940</td>
<td>10,100</td>
<td>12,400</td>
</tr>
<tr>
<td>Proper.Orthogonal.Decomposition</td>
<td>977</td>
<td>3,490</td>
<td>5,160</td>
<td>7,820</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Principal.Component.Analysis</td>
<td>672,000</td>
<td>874,000</td>
<td>1,140,000</td>
<td>1,340,000</td>
</tr>
<tr>
<td>Singular.Value.Decomposition</td>
<td>158,000</td>
<td>178,000</td>
<td>219,000</td>
<td>256,000</td>
</tr>
<tr>
<td>Karhunen.Loeve</td>
<td>21,700</td>
<td>23,700</td>
<td>27,300</td>
<td>29,300</td>
</tr>
<tr>
<td>Canonical.Correlation.Analysis</td>
<td>22,600</td>
<td>25,100</td>
<td>29,200</td>
<td>32,600</td>
</tr>
<tr>
<td>Empirical.Orthogonal.(Function</td>
<td>Functions</td>
<td>16,800</td>
<td>19,600</td>
<td>22,800</td>
</tr>
<tr>
<td>Proper.Orthogonal.Decomposition</td>
<td>7,850</td>
<td>9,340</td>
<td>12,500</td>
<td>15,200</td>
</tr>
</tbody>
</table>

The SVD of J is given by (Math 543)

$$J = U \begin{bmatrix} S & 0 \\ 0 & 0 \end{bmatrix} V^T = \begin{bmatrix} U_1 & U_2 \end{bmatrix} \begin{bmatrix} S \\ 0 \end{bmatrix} V^T = U_1 S V^T$$

where

- U is $m \times m$ orthogonal
- U_1 contains the first n columns of U
- U_2 contains the remaining $(m-n)$ columns of U
- V is $n \times n$ orthogonal
- S is $n \times n$ diagonal, with elements $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n > 0$.

Note that $J^T J = VS^2 V^T$, so that the columns of V are eigenvectors of $J^T J$ with eigenvalues σ_j^2.

Peter Blomgren, (blomgren.peter@gmail.com) Nonlinear Least Squares Problems — (21/28)
Now,

\[\| J \bar{x} + \bar{r}_0 \|_2^2 = \left\| \begin{bmatrix} S & 0 \\ 0 & 0 \end{bmatrix} (V^T \bar{x}) + \begin{bmatrix} U_1^T \\ U_2^T \end{bmatrix} \bar{r}_0 \right\|_2^2 \]

\[= \| S(V^T \bar{x}) + U_1^T \bar{r}_0 \|_2^2 + \| U_2^T \bar{r}_0 \|_2^2 \]

Again, we find the optimum by setting the first contribution to zero, i.e.

\[\bar{x}^* = VS^{-1} U_1^T \bar{r}_0 = \sum_{i=1}^{n} \frac{\bar{u}_i^T \bar{r}_0}{\sigma_i} \bar{v}_i, \]

where \(\bar{u}_i \) and \(\bar{v}_i \) are the \(i \)th columns of \(U \) and \(V \), respectively.

The expression for the optimum,

\[\bar{x}^* = \sum_{i=1}^{n} \frac{\bar{u}_i^T \bar{r}_0}{\sigma_i} \bar{v}_i, \]

gives us information about the sensitivity of \(\bar{x}^* \). When \(\sigma_i \) is small, \(\bar{x}^* \) is particularly sensitive to perturbations that affect \(\bar{u}_i^T \bar{r}_0 \).

This information is useful when \(\sigma_n/\sigma_1 \ll 1 \) (\(J \) nearly rank-deficient).

Summary: Three Methods for \(J^T J \bar{x}^* = -J^T \bar{r}_0 \).

All three approaches are useful under the right circumstances.

- Cholesky-based algorithm is particularly useful when \(m \gg n \), in this case it is practical to store \(J^T J \), but not \(J \). When \(J \) is rank-deficient or ill-conditioned diagonal pivoting must be implemented to limit the propagation of round-off errors. (This approach to be used sparingly)

- In the QR-approach with column pivoting, ill-conditioning usually causes the elements in the lower right-hand corner of the matrix \(R \) to be much smaller than the other elements. The strategy produces a solution to a nearby problem in which \(J \) is slightly perturbed. (This is the preferred every-day approach)

- The SVD-approach is the most robust and reliable for ill-conditioned problems. When \(J \) is actually rank deficient, some of the singular values \(\sigma_i \) are exactly zero. Any vector of the form

\[\bar{x}^* = \sum_{i: \sigma_i \neq 0} \frac{\bar{u}_i^T \bar{r}_0}{\sigma_i} \bar{v}_i + \sum_{i: \sigma_i = 0} \tau_i \bar{v}_i \]

(for any values \(\tau_i \)) is a minimizer of the least-squares problem. Usually the minimum-norm (\(\tau_i = 0 \)) solution is desirable. (When \(J \) is rank-deficient, this is the only approach of the three that works)

With these results in our tool-box, we are ready to attack the solution of the non-linear least squares problem next time.