Numerical Solutions to PDEs

Lecture Notes #8
— Stability for Multistep Schemes —
Schur and von Neumann Polynomials

Peter Blomgren,
⟨blomgren.peter@gmail.com⟩

Department of Mathematics and Statistics
Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego, CA 92182-7720

http://terminus.sdsu.edu/

Spring 2018
1 Recap
 - In a previous episode of Math 693b...

2 Stability
 - “Proof” by Picture...
 - Beyond “Proof by Picture” — Building a Theoretical Toolbox

3 Schur and von Neumann Polynomials
 - Definitions and Theorems
 - Examples: Revisited with Theoretical Toolbox in Hand...
 - Algorithm for von Neumann / Schur Polynomials
Previously...

We looked at stability for multistep schemes. — First, we did a complete analysis of the stability picture for the leapfrog scheme,

\[
\frac{v_{m+1}^{n+1} - v_{m-1}^{n-1}}{2k} + a \frac{v_{m+1}^n - v_{m-1}^n}{2h} = 0
\]

in which we found bounds for the roots of

\[
g(\theta)^2 + \left[2ia\lambda \sin(\theta) \right] g(\theta) - 1 = 0
\]

so that \(|g_{\pm}(\theta)| \leq 1\) for simple roots and \(|g_{\pm}(\theta)| < 1\) for multiple roots.

The analysis for general multi-step scheme has the same “flavor,” but we postponed the development of a unified framework for that analysis until today.
Last time, we boldly stated that the scheme

\[
\frac{3v_{m+1}^n - 4v_m^n + v_{m-1}^n}{2k} + a \frac{v_{m+1}^{n+1} - v_{m-1}^{n+1}}{2h} = f_{m+1}^n
\]

with amplification polynomial

\[
\Phi(g, \theta) = \left[\frac{3 + 2ia\lambda \sin(\theta)}{2} \right] g^2 - 2g + \frac{1}{2}
\]

is unconditionally stable, and order-(2,2) accurate.

Whereas pictures are not proof, the plots of the roots for various values of \(a\lambda\) and \(\theta \in [-\pi, \pi]\) shown on slide 7 seem to indicate that the stability is indeed unconditional.
Sure, we can take the amplification polynomial

\[\Phi(g, \theta) = \left[\frac{3 + 2ia\lambda \sin(\theta)}{2} \right] g^2 - 2g + \frac{1}{2} = 0 \]

and formally apply the quadratic formula

\[g_{\pm}(\theta) = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{4 \pm \sqrt{2 - 4 \left[\frac{3+2ia\lambda \sin(\theta)}{2} \right] \frac{1}{2}}}{2 \left[\frac{3+2ia\lambda \sin(\theta)}{2} \right]} \]

\[\leadsto g_{\pm}(\theta) = \frac{2 \pm \sqrt{1 - 2ia\lambda \sin(\theta)}}{3 + 2ia\lambda \sin(\theta)} \]
Example: Unnamed Scheme From Last Time

\[g_{\pm}(\theta) = \frac{2 \pm \sqrt{1 - 2ia\lambda \sin(\theta)}}{3 + 2ia\lambda \sin(\theta)} \]

\[\leadsto g_{\pm}(\theta) = \frac{(2 \pm \sqrt{1 - 2ia\lambda \sin(\theta)}) (3 - 2ia\lambda \sin(\theta))}{9 + 4(a\lambda)^2 \sin^2(\theta)} \]

Next, define an appropriate branch for the square-root in the complex plane; chase down the various cases... and there it is?!
Example: Unnamed Scheme From Last Time

- $a\lambda = 1$
- $a\lambda = 4$
- $a\lambda = 16$
- $a\lambda = 64$
Example #2: Another Second-Order Accurate Scheme

The second order accurate scheme

\[
\frac{7v_{n+1}^m - 8v_n^m + v_{n-1}^m}{6k} + a\delta_0 \left[\frac{2v_{n+1}^m + v_n^m}{3} \right] = f_{m}^{n+2/3}
\]

has the amplification polynomial

\[
\Phi(g) = \left[7 + 4i\beta \right] g^2 - \left[8 - 2i\beta \right] g + 1
\]

where \(\beta = a\lambda \sin(\theta) \). Also seems to have pretty decent stability properties (see next slide).
Example #2: Root Plots

- For $a\lambda = 1$, the roots are all located within the unit circle.
- For $a\lambda = 4$, the roots are still within the unit circle but closer to the boundary.
- For $a\lambda = 16$, the roots are all located on the boundary of the unit circle.
- For $a\lambda = 64$, the roots are all located at the origin.

Peter Blomgren, ⟨blomgren.peter@gmail.com⟩
Example #3: An Order-(3,4) Accurate Scheme

The (3,4)-order accurate scheme

$$\frac{23v_{m}^{n+1} - 21v_{m}^{n} - 3v_{m}^{n-1} + v_{m}^{n-2}}{24k} + \left[1 + \frac{h^2}{6} \delta^2 \right]^{-1} \cdot \left[a \delta_0 \left(\frac{v_{m}^{n+1} + v_{m}^{n}}{2} \right) + \frac{k^2 a^2}{8} \delta^2 \left(\frac{v_{m}^{n+1} - v_{m}^{n}}{k} \right) \right] = f_{m}^{n+1/2},$$

has the amplification polynomial

$$\Phi(g) = \left[23 - 12\alpha + 12i\beta \right] g^3 - \left[21 - 12\alpha - 12i\beta \right] g^2 - 3g + 1,$$

where

$$\alpha = \frac{a^2 \lambda^2 \sin^2 \left(\frac{\theta}{2} \right)}{1 - \frac{2}{3} \sin^2 \left(\frac{\theta}{2} \right)}, \quad \beta = \frac{a \lambda \sin \left(\theta \right)}{1 - \frac{2}{3} \sin^2 \left(\frac{\theta}{2} \right)}.$$

Does not seem to be unconditionally stable...

Peter Blomgren, <blomgren.peter@gmail.com>
Example #3: Root Plots

- $a\lambda = 0.5$
- $a\lambda = 0.66667$
- $a\lambda = 0.75$
- $a\lambda = 0.8$

Peter Blomgren, blomgren.peter@gmail.com

Schur and von Neumann Polynomials
Example #4: An Order-(4,4) Accurate Scheme

The (4,4)-order accurate scheme

$$\frac{v_{n+2} - v_{n-2}}{4k} + a \left[1 + \frac{h^2}{6} \right]^{-1} \delta_0 \left(\frac{2v_{n+1}^n - v_n^m + 2n^{-1}}{3} \right)$$

has the amplification polynomial

$$\Phi(g) = g^4 + \frac{4}{3} i\beta \left(2g^3 - g^2 + 2g \right) - 1,$$

where

$$\beta = \frac{a\lambda \sin (\theta)}{1 - \frac{2}{3} \sin^2 \left(\frac{\theta}{2} \right)}.$$

Does not seem to be unconditionally stable...
Example #4: Root Plots

- $a^\lambda = 0.2$
- $a^\lambda = 0.25$
- $a^\lambda = 0.3$
- $a^\lambda = 0.4$

Peter Blomgren, ⟨blomgren.peter@gmail.com⟩
Moving Beyond “Proof By Picture”

Looking at the expressions and corresponding figures in the previous examples, it is quite clear that the analysis, *i.e.* the determination and bounding of the roots of these polynomials is quite a task.

The good news is that there is a well-developed theory and an algorithm for checking whether the roots of these polynomials satisfy the stability conditions: —

Theorem (Stability of Multistep Schemes)

If the amplification polynomial \(\Phi(g, \theta) \) is explicitly independent of \(h \) and \(k \), then the necessary and sufficient condition for the finite difference scheme to be stable is that all roots, \(g_\nu(\theta) \), satisfy the following conditions:

(a) \(|g_\nu(\theta)| \leq 1 \), and

(b) *if \(|g_\nu(\theta)| = 1 \), then \(g_\nu(\theta) \) must be a simple root.*
Let \(\varphi_d(z) = a_d z^d + \cdots + a_0 = \sum_{\ell=0}^d a_\ell z^\ell \) be a polynomial of degree \(d \). If \(a_d \neq 0 \), then \(\varphi \) is of exact degree \(d \).

Definition (Schur Polynomial)

The polynomial \(\varphi \) is a Schur polynomial if all its roots, \(r_\nu \), satisfy \(|r_\nu| < 1\).

Definition (von Neumann Polynomial)

The polynomial \(\varphi \) is a von Neumann polynomial if all its roots, \(r_\nu \), satisfy \(|r_\nu| \leq 1\).
Let \(\varphi_d(z) = a_d z^d + \cdots + a_0 = \sum_{\ell=0}^{d} a_{\ell} z^{\ell} \) be a polynomial of degree \(d \). If \(a_d \neq 0 \), then \(\varphi \) is of exact degree \(d \).

Definition (Simple von Neumann Polynomial)

The polynomial \(\varphi \) is a simple von Neumann polynomial if \(\varphi \) is a von Neumann polynomial, and its roots on the unit circle are simple roots.

Definition (Conservative Polynomial)

The polynomial \(\varphi \) is a conservative polynomial if all its roots lie on the unit circle, i.e. \(|r_\nu| = 1 \).
For a polynomial of exact degree d, we define the polynomial

$$\varphi^*(z) = \sum_{\ell=0}^{d} \bar{a}_{d-\ell} z^\ell \equiv \varphi(1/\bar{z})z^d,$$

where \bar{z} is the complex conjugate of z.

We recursively define the polynomial φ_{d-1} of exact degree $d - 1$ by

$$\varphi_{d-1}(z) = \frac{\varphi^*(0)\varphi_d(z) - \varphi_d(0)\varphi^*_d(z)}{z} \equiv \frac{\bar{a}_d\varphi_d(z) - a_0\varphi^*_d(z)}{z}.$$

We are now ready to state theorems which provide tests for Schur and simple von Neumann polynomials.
Theorem (Schur Polynomial Test)

\(\varphi_d \) is a Schur polynomial of exact degree \(d \) if and only if \(\varphi_d - 1 \) is a Schur polynomial of exact degree \(d - 1 \) and \(|\varphi_d(0)| < |\varphi^*_d(0)| \).

Theorem (Simple von Neumann Polynomial Test)

\(\varphi_d \) is a simple von Neumann polynomial if and only if either

(a) \(|\varphi_d(0)| < |\varphi^*_d(0)| \) and \(\varphi_{d-1} \) is a simple von Neumann polynomial, or

(b) \(\varphi_{d-1} \) is identically zero and \(\varphi'_d \) is a Schur polynomial.

The (somewhat lengthy) proofs, which depend on Rouché’s theorem (complex analysis) are in Strikwerda pp. 110–114.
Theorem (von Neumann Polynomial Test)

\(\varphi_d \) is a von Neumann polynomial of degree \(d \), if and only if either

(a) \(|\varphi_d(0)| < |\varphi^*_d(0)| \) and \(\varphi_{d-1} \) is a von Neumann polynomial of degree \(d - 1 \), or

(b) \(\varphi_{d-1} \) is identically zero and \(\varphi'_d \) is a von Neumann polynomial.

Theorem (Conservative Polynomial Test)

\(\varphi_d \) is a conservative polynomial if and only if \(\varphi_{d-1} \) is identically zero and \(\varphi'_d \) is a von Neumann polynomial.

Theorem (Simple Conservative Polynomial Test)

\(\varphi_d \) is a simple conservative polynomial if and only if \(\varphi_{d-1} \) is identically zero and \(\varphi'_d \) is a Schur polynomial.
The scheme had the amplification polynomial

\[\varphi_2(z) = \left[\frac{3 + 2ia\lambda \sin(\theta)}{2} \right] z^2 - 2z + \frac{1}{2}. \]

It is stable exactly when \(\varphi_2(z) \) is a simple von Neumann polynomial. We make repeated use of the simple-von-Neumann-polynomial-test in order to check stability of the scheme.

We first test \(|\varphi_2(0)|^2 = \frac{1}{4} < \frac{1}{4} \left(3^2 + 4a^2\lambda^2 \sin^2(\theta) \right) = |\varphi_2^*(0)|^2 \), then define, with \((c + di)\) being the coefficient in front of \(z^2\) in \(\varphi_2(z)\):

\[\varphi_1(z) = \frac{1}{z} \left[(c-di) \left((c+di)z^2 - 2z + \frac{1}{2} \right) - \frac{1}{2} \left((c-di) - 2z + \frac{1}{2}z^2 \right) \right] \]

\[= \left(d^2 + c^2 - \frac{1}{4} \right) z + (1 - 2c + 2id) \]
Now, \(\varphi_1(z) \) is a simple von Neumann polynomial as long as

\[
\left(d^2 + c^2 - \frac{1}{4}\right)^2 \geq (1 - 2c)^2 + 4d^2 = 1 + 4c^2 + 4d^2 - 4c
\]

where \(c = \frac{3}{2} \), and \(d = a\lambda \sin(\theta) \).

Plugging in we must have

\[
a^4\lambda^4 \sin^4(\theta) + 4a^2\lambda^2 \sin^2(\theta) + 4 \geq 4a^2\lambda^2 \sin^2(\theta) + 4
\]

Which holds strictly for \(\sin(\theta) \neq 0 \), and with equality when \(\sin(\theta) = 0 \).

Conclusion: The scheme is unconditionally stable.
The scheme had the amplification polynomial

$$\varphi_2(z) = \left[7 + 4i\beta\right]z^2 - \left[8 - 2i\beta\right]z + 1$$

it is stable exactly when $\varphi_2(z)$ is a simple von Neumann polynomial. We make repeated use of the simple-von-Neumann-polynomial-test in order to check stability of the scheme.

With $\beta = a\lambda \sin(\theta)$, we first test $|\varphi_2^*(0)| = |7 - 4i\beta| > 1 = |\varphi_2(0)|$, then define

$$\varphi_1(z) = \frac{1}{z} \left((7 - 4i\beta) \left([7 + 4i\beta]z^2 - [8 - 2i\beta]z + 1 \right) \right.$$

$$\left. - 1 \left([7 - 4i\beta] - [8 + 2i\beta]z + z^2 \right) \right)$$

$$= 4 \left((12 + 4\beta^2)z + ((2\beta^2 - 12) + 12i\beta) \right).$$
$$\varphi_1(z) = 4 \left((12 + 4\beta^2) z + (2\beta^2 - 12) + 12i\beta \right)$$

is a simple von Neumann polynomial if and only if

$$|\varphi_1(0)|^2 = |(2\beta^2 - 12) + 12i\beta|^2 = (12 - 2\beta^2)^2 + 12^2\beta^2$$

$$= 144 + 96\beta^2 + 4\beta^4 \leq |\varphi_1^*(0)|^2 = (12 + 4\beta^2)^2 = 144 + 96\beta^2 + 16\beta^4$$

The inequality holds strictly as long as $$\beta \neq 0$$, in which case we get equality.

Note: Since $$\varphi_1(z)$$ only has one root, it is sufficient to bound that root by \(\leq 1 \) in order for $$\varphi_1(z)$$ to be a simple von Neumann polynomial.

Conclusion: The scheme is unconditionally stable.
Stability

Schur and von Neumann Polynomials

Definitions and Theorems

Examples: Revisited with Theoretical Toolbox in Hand...

Algorithm for von Neumann / Schur Polynomials

Example #3: Revisited

In this case the amplification polynomial is given by

\[\varphi_3(z) = \left[23 - 12 \alpha + 12 i \beta \right] z^3 - \left[21 - 12 \alpha - 12 i \beta \right] z^2 - 3z + 1 \]

where

\[\alpha = \frac{a^2 \lambda^2 \sin^2 \left(\frac{\theta}{2} \right)}{1 - \frac{2}{3} \sin^2 \left(\frac{\theta}{2} \right)} \in [0, 3a^2 \lambda^2], \quad \beta = \frac{a \lambda \sin \theta}{1 - \frac{2}{3} \sin^2 \left(\frac{\theta}{2} \right)} \in [-a \lambda \sqrt{3}, a \lambda \sqrt{3}] . \]

The first check \(|\varphi_3(0)| < |\varphi^*_3(0)|\) can be expressed as

\(|\varphi^*_3(0)|^2 - |\varphi_3(z)|^2 > 0, \) and we get

\[|\varphi^*_3(0)|^2 - |\varphi_3(0)|^2 = 24(2 - \alpha)(11 - 6 \alpha) + 12^2 \beta^2 \]

we see that we must require \(0 \leq \alpha \leq \frac{11}{6}\) for stability.
The polynomial $\varphi_2(z)$ is (after division by the common factor 24)

$$
\varphi_2(z) = \left[(11 - 6\alpha)(2 - \alpha) + 6\beta^2 \right] z^2
- 2 \left[(2 - \alpha)(5 - 3\alpha) - 3\beta^2 - (11 - 6\alpha)i\beta \right] z - (2 - \alpha - 2i\beta),
$$

and

$$
|\varphi_2^*(0)|^2 - |\varphi_2(0)|^2 = 4(5 - 3\alpha) \left[3(2 - \alpha)^3 + \beta^2(13 - 6\alpha) \right] + 36\beta^4.
$$

This now requires that $0 \leq \alpha \leq \frac{5}{3} < \frac{11}{6}$ for stability.
Finally, the polynomial \(\varphi_1(z) \) is

\[
\varphi_1(z) = \left[120 - 252\alpha + 198\alpha^2 - 69\alpha^3 + 9\alpha^4(18\alpha^2 - 69\alpha + 65)\beta^2 + 9\beta^4 \right] z
\]

\[
+ 9\beta^4 + 6(5 - 3\alpha)i\beta^3 + (3\alpha - 5)\beta^2 - \left(18\alpha^3 + 102\alpha^2 + 192\alpha - 120\right)i\beta
\]

\[
- 9\alpha^4 + 69\alpha^3 - 198\alpha^2 + 252\alpha - 120
\]

The root-condition \(|\varphi_1^*(0)|^2 - |\varphi_1(0)|^2 > 0 \) translates to

\[
12\beta^4(5 - 3\alpha) \left[6\beta^2 + (11 - 6\alpha)(2 - \alpha) \right] > 0
\]

This holds in the range \(0 \leq \alpha \leq \frac{5}{3} \); our strictest bound on \(\alpha \).
We now have that
\[
\alpha = |a\lambda|^2 \frac{\sin^2 \left(\frac{\theta}{2} \right)}{1 - \frac{2}{3} \sin^2 \left(\frac{\theta}{2} \right)} \leq \frac{5}{3}
\]
\[
\in [0, 3]
\]
and it follows that the scheme is stable if and only if
\[
|a\lambda| \leq \frac{\sqrt{5}}{3} \approx 0.7454 \ldots
\]
\[\varphi_4(z) = z^4 + \frac{4}{3} i \beta \left(2z^3 - z^2 + 2z \right) - 1, \quad \beta = \frac{a \lambda \sin(\theta)}{1 - \frac{2}{3} \sin^2 \left(\frac{\theta}{2} \right)} \in [-a \lambda \sqrt{3}, a \lambda \sqrt{3}] \]

Here, \(|\varphi_4(0)| = |\varphi^*_4(0)| = 1\). But \(\varphi_3(z) \equiv 0\), hence there is still hope, for \(\varphi_4(z)\) being a simple von Neumann polynomial. We must test whether \(\psi_3(z) = \frac{3}{4} \varphi_4'(z) = 3z^3 + i \beta (6z^2 - 2z + 2)\) is a Schur polynomial.

\[|\psi^*_3(0)| - |\psi_3(0)| = 3 - |2\beta| > 0, \text{ as long as } |\beta| < \frac{3}{2}. \]

We form

\[\psi_2(z) = (9 - 4\beta^2)z^2 + (4\beta^2 + 18i\beta)z - 12\beta^2 - 6i\beta \]

\[|\psi^*_2(0)|^2 - |\psi_2(0)|^2 > 0 \text{ if and only if } (9 - 4\beta^2)^2 > (12\beta^2)^2 + (6\beta)^2, \]

which gives \(\beta^2 < \frac{9}{64} \left[\sqrt{41} - 3 \right] < \frac{9}{4}\).
Next, we form

$$\psi_1(z) = \left(81 - 108\beta^2 - 128\beta^4 \right)z + \left([32\beta^4 + 144\beta^2] - i [264\beta^3 - 162\beta] \right)$$

The one root is inside the unit circle only if

$$\left(81 - 108\beta^2 - 128\beta^4 \right)^2 - \left([32\beta^4 + 144\beta^2]^2 + [264\beta^3 - 162\beta]^2 \right) \geq 0.$$

This expression can be factored as

$$3\left(9 - 4\beta^2 \right) \left(3 - 16\beta^2 \right) \left(\beta^2 (80\beta^2 - 72) + 81 \right) \geq 0.$$

Hence, $\psi_1(z)$ is a Schur polynomial for

$$\beta^2 < \frac{3}{16} < \frac{9}{64} [\sqrt{41} - 3].$$
Hence, our final stability condition is

$$|\beta| = \frac{|a\lambda \sin(\theta)|}{1 - \frac{2}{3} \sin^2 \left(\frac{\theta}{2}\right)} < \frac{\sqrt{3}}{4}.$$

The maximum occurs when \(\cos(\theta) = -1/2\), and the scheme is stable when \(|a\lambda| < \frac{1}{4}\).

Note that even though the scheme is implicit, it is not unconditionally stable.
Algorithm for von Neumann / Schur Polynomials

Start with \(\varphi_d(z) \) of exact degree \(d \), and set NeumannOrder = 0.

\begin{algorithm}
\textbf{while} \((d > 0) \) \textbf{do}
\begin{enumerate}
\item Construct \(\varphi_d^*(z) \)
\item Define \(c_d = |\varphi_d^*(0)|^2 - |\varphi_d(0)|^2 \). (*)
\item Construct the polynomial \(\psi(z) = \frac{1}{z}(\varphi_d^*(0)\varphi_d(z) - \varphi_d(0)\varphi_d^*(z)) \).
\item.1 If \(\psi(z) \equiv 0 \), then increase NeumannOrder by 1, and set \(\varphi_{d-1}(z) := \varphi'_d(z) \).
\item.2 Otherwise, if the coefficient of degree \(d - 1 \) in \(\psi(z) \) is 0, then the polynomial is not a von Neumann polynomial of any order, \textbf{terminate algorithm}.
\item.3 Otherwise, set \(\varphi_{d-1}(z) := \psi(z) \).
\end{enumerate}
\textbf{end-while} (decrease \(d \) by 1)
\end{algorithm}

(*) Enforce appropriate conditions on \(c_d \).
Comments on the Algorithm

At the end of the algorithm, if the polynomial has not been rejected by 4.2 —

- The polynomial is a von Neumann polynomial of the resulting order (NeumannOrder) provided that all the parameters c_d satisfy the appropriate inequalities. — These inequalities provide the stability conditions.

- For first-order PDEs, the amplification polynomial must be a von Neumann polynomial of order 1 for the scheme to be stable.

- For second-order PDEs, the amplification polynomial must be a von Neumann polynomial of order 2 for the scheme to be stable.

- Schur polynomials are von Neumann polynomials of order 0.

This analysis can be automated using a symbolic toolbox. — Again, we have reduced something complicated to a deterministic “recipe.”