Numerical Solutions to PDEs
Lecture Notes #13
— Systems of PDEs in Higher Dimensions —
The Alternating Direction Implicit Method

Peter Blomgren,
⟨blomgren.peter@gmail.com⟩
Department of Mathematics and Statistics
Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego, CA 92182-7720
http://terminus.sdsu.edu/

Spring 2018
1 Recap
 - Previously...

2 The Alternating Direction Implicit Method
 - Introduction
 - Crank-Nicolson / ADI on a 2D Square

3 ADI Algorithms
 - Peaceman-Rachford
 - D’Yakonov
 - Boundary Conditions for ADI Schemes

4 Implementing ADI Methods
 - Peaceman-Rachford
 - The Mitchell-Fairweather Scheme
 - Mixed \((u_{xy})\) Derivative Terms
Previously

We started looking at multi-dimensional hyperbolic and parabolic problems, first via vector-valued problems with one time and one space dimension, and then to full multi-space dimensional problems.

In terms of definitions, nothing much changed — the concepts of convergence, consistency, stability and order of accuracy are the same.

However, some of the analysis becomes quite challenging. — For instance, we end up needing to bound nth powers of amplification matrices $\|G^n\| \leq C_T$.

In order to be able to say anything useful we have to make simplifying assumptions, e.g. simultaneous diagonalizability.

We looked at time-split schemes as a practical way to route around some (size / complexity) of the computational challenges. (Stability and Boundary Conditions are a different story...)

Peter Blomgren, ⟨blomgren.peter@gmail.com⟩ Systems of PDEs in nD: The ADI Method — (3/22)
The Alternating Direction Implicit (ADI) method is particularly useful for solving **parabolic equations** on rectangular domains, but can be generalized to other situations.

Given a parabolic equation, \(u_t = \nabla \circ (B\nabla u) \),

\[
 u_t = [\partial_x \partial_y] \begin{bmatrix} b_{11} & b_{12} \\ b_{12} & b_{22} \end{bmatrix} \begin{bmatrix} \partial_x \\ \partial_y \end{bmatrix} u = b_{11}u_{xx} + 2b_{12}u_{xy} + b_{22}u_{yy},
\]

for which \(b_{11}, b_{22} > 0 \) and \(b_{12}^2 < b_{11} \cdot b_{22} \) for parabolicity; and constant (for now).

Initially, we will consider the case \(b_{12} = 0 \) (no mixed derivative), on a square domain...
Figure: **[LEFT]** The matrix which must be inverted in each Crank-Nicolson iteration. If we trade storage of the LU-factorization **[CENTER, RIGHT]** for speed, then here with 6×6 interior points, we end up needing more than 4 times the storage. For 100×100 interior points, the requirement jumps from 49,600 matrix entries, to just over 2,000,000 (a factor of 40). The band-width grows linearly in n, and the LU-factorization fills in the whole bandwidth. In 3D the story gets even worse — with $n \times n \times n$ interior points, the bandwidth is n^2...

If we use the Crank-Nicolson schemes (for 2 spatial dimensions), we end up having to invert a penta-diagonal matrix in each iteration.
Crank-Nicolson in a Cube

Figure: **[Left]** The matrix which must be inverted in each Crank-Nicolson iteration. If we trade storage of the LU-factorization **[Center, Right]** for speed, then here with $6 \times 6 \times 6$ interior points, we end up needing more than 10 times the storage. For 20^3 (30^3) interior points, the requirement jumps from 53,600 (183,600) matrix entries, to just over 6,000,000 (47,000,000) — a factor of 114 (256). The band-width grows quadratically $O(n^2)$, and the LU-factorization fills in the whole bandwidth. $\text{LU}_{\text{time}}^{\text{Matlab}} = 8.5$s (143.6s).

If we use the Crank-Nicolson schemes (for 3 spatial dimensions), we end up having to invert a hepta-diagonal matrix in each iteration.
The ADI method reduces an n-dimensional problem to a sequence of n one-dimensional problems. We here present the idea in 2D...

Let A_1 and A_2 be two linear operators, e.g.

$$A_1 u = b_1 \frac{\partial^2}{\partial x^2} u, \quad A_2 u = b_2 \frac{\partial^2}{\partial y^2} u.$$

For the argument to make sense, we must require that we have efficient (convenient) ways of solving the equations

$$w_t = A_i w, \quad i = 1, 2,$$

with A_1, and A_2 as above and a Crank-Nicolson step, these solutions are given by inversion of tri-diagonal matrices.
The ADI method will give us a way to solve the combined equation

\[u_t = A_1 u + A_2 u, \]

using the available 1D-solvers as building blocks.

Crank-Nicolson applied to the combined equation gives us

\[
\frac{u^{n+1} - u^n}{k} = \frac{1}{2} \left[A_1 u^{n+1} + A_1 u^n \right] + \frac{1}{2} \left[A_2 u^{n+1} + A_2 u^n \right] + O(k^2).
\]

Which, with some rearrangement can be written

\[
\left[I - \frac{k}{2} A_1 - \frac{k}{2} A_2 \right] u^{n+1} = \left[I + \frac{k}{2} A_1 + \frac{k}{2} A_2 \right] u^n + O(k^3).
\]
Now, we notice that

\[(1 \pm A_1)(1 \pm A_2) = 1 \pm A_1 \pm A_2 + A_1 A_2.\]

By adding and subtracting \(k^2 A_1 A_2 u^*\) on both sides of the Crank-Nicolson expression we get

\[
\begin{align*}
&\left[I - \frac{k}{2} A_1 - \frac{k}{2} A_2 + \frac{k^2}{4} A_1 A_2 \right] u^{n+1} \\
= &\left[I + \frac{k}{2} A_1 + \frac{k}{2} A_2 + \frac{k^2}{4} A_1 A_2 \right] u^n \\
+ &\frac{k^2}{4} A_1 A_2 \left[u^{n+1} - u^n \right] + O(k^3).
\end{align*}
\]
We can factor this, and use the fact that $u^{n+1} = u^n + O(k)$ to embed the last term on the right-hand-side into the $O(k^3)$-term:

$$\begin{bmatrix} I - \frac{k}{2}A_1 \end{bmatrix} \begin{bmatrix} I - \frac{k}{2}A_2 \end{bmatrix} u^{n+1} = \begin{bmatrix} I + \frac{k}{2}A_1 \end{bmatrix} \begin{bmatrix} I + \frac{k}{2}A_2 \end{bmatrix} u^n + O(k^3).$$

Now, if we want to advance the solution numerically, we can discretize this equation, and here when $A_1 = b_1 u_{xx}$, $A_2 = b_2 u_{yy}$, the matrices corresponding to $I - k/2 A_i$ will be tridiagonal and can be inverted quickly using the Thomas algorithm.

We get the discretized ADI scheme

$$\begin{bmatrix} I - \frac{k}{2}A_{1,h} \end{bmatrix} \begin{bmatrix} I - \frac{k}{2}A_{2,h} \end{bmatrix} v^{n+1} = \begin{bmatrix} I + \frac{k}{2}A_{1,h} \end{bmatrix} \begin{bmatrix} I + \frac{k}{2}A_{2,h} \end{bmatrix} v^n.$$
There are several approaches to solving the ADI scheme, one commonly used approach is the Peaceman-Rachford algorithm, which also explains the origin of the name **alternating direction implicit method**:

\[
\begin{align*}
\left[I - \frac{k}{2}A_1,h\right] v^{n+1/2} &= \left[I + \frac{k}{2}A_2,h\right] v^n, \\
\left[I - \frac{k}{2}A_2,h\right] v^{n+1} &= \left[I + \frac{k}{2}A_1,h\right] v^{n+1/2}.
\end{align*}
\]

In the first half-step, the x-direction is implicit, and the y-direction explicit, and in the second half-step the roles are reversed.

Is this scheme equivalent to the ADI scheme we derived?!? — It looks quite different!
We have,

\[
\begin{align*}
\left[I - \frac{k}{2} A_{1,h} \right] v^{n+1/2} &= \left[I + \frac{k}{2} A_{2,h} \right] v^n, \\
\left[I - \frac{k}{2} A_{2,h} \right] v^{n+1} &= \left[I + \frac{k}{2} A_{1,h} \right] v^{n+1/2}.
\end{align*}
\]

Hence,

\[
\begin{align*}
\left[I - \frac{k}{2} A_{1,h} \right] \left[I - \frac{k}{2} A_{2,h} \right] v^{n+1} &= \left[I - \frac{k}{2} A_{1,h} \right] \left[I + \frac{k}{2} A_{1,h} \right] v^{n+1/2} \\
= \left[I + \frac{k}{2} A_{1,h} \right] \left[I - \frac{k}{2} A_{1,h} \right] v^{n+1/2} &= \left[I + \frac{k}{2} A_{1,h} \right] \left[I + \frac{k}{2} A_{2,h} \right] v^n.
\end{align*}
\]

Note that we do not need \(A_{1,h} A_{2,h} = A_{2,h} A_{1,h} \) for this to hold.
The D’Yakonov scheme is a direct splitting of the ADI scheme we originally derived:

\[
\begin{align*}
&\left[I - \frac{k}{2} A_{1,h} \right] v^{n+1/2} = \left[I + \frac{k}{2} A_{1,h} \right] \left[I + \frac{k}{2} A_{2,h} \right] v^n \\
&\left[I - \frac{k}{2} A_{2,h} \right] v^{n+1} = v^{n+1/2},
\end{align*}
\]

Other ADI-type schemes can be derived starting with other basic schemes (we worked from Crank-Nicolson), e.g. the **Douglas-Rachford** method (Strikwerda pp. 175–176) is derived based on backward-time central-space.
Boundary Conditions for ADI Schemes

Here, we consider Dirichlet boundary conditions $u = \beta(t, x, y)$ specified at the boundary, in the context of the Peaceman-Rachford scheme

\[
\begin{align*}
[l - \frac{k}{2} A_{1,h}] v^{n+1/2} &= [l + \frac{k}{2} A_{2,h}] v^n, \\
[l - \frac{k}{2} A_{2,h}] v^{n+1} &= [l + \frac{k}{2} A_{1,h}] v^{n+1/2}.
\end{align*}
\]

The correct boundary conditions for the half-step quantity is given by

\[
v^{n+1/2} = \frac{1}{2} [l + k A_{2,h}] \beta^n + \frac{1}{2} [l - k A_{2,h}] \beta^{n+1}.
\]

Where did that come from?!? — Flip the second equation in the scheme, add the two, and solve for $v^{n+1/2}$. ... And it makes sense, “half” the condition comes from the past, and “half” from the future.
We consider Peaceman-Rachford on a grid, where
\((x_\ell, y_m) = (\ell \Delta x, m \Delta y), \ell = 0, \ldots, L, m = 0, \ldots, M\). We let
\(\mu_x = k / \Delta x^2, \mu_y = k / \Delta y^2\). Further, we let \(v_{\ell,m}\) denote the full-step quantity, and \(w_{\ell,m}\) denote the half-step quantity; if we are not interested in saving the results for all \(t = kn\), we can overwrite these quantities...

We get, the first half-stage

\[
- \left[\frac{b_1 \mu_x}{2} \right] w_{\ell-1,m} + \left[1 + b_1 \mu_x \right] w_{\ell,m} - \left[\frac{b_1 \mu_x}{2} \right] w_{\ell+1,m} = \left[\frac{b_2 \mu_y}{2} \right] v_{\ell,m-1} + \left[1 - b_2 \mu_y \right] v_{\ell,m} + \left[\frac{b_2 \mu_y}{2} \right] v_{\ell,m+1},
\]

for \(\ell = 1, \ldots, L - 1\), and \(m = 1, \ldots, M - 1\).
Implementing ADI Methods

Figure: “Active” points in the first half-step, the interior points are active both for the old \(v \)-layer and the \(w \)-layer which is being computed. Also, the boundary values at the top \(v_{\ell,M} \) and bottom \(v_{\ell,0} \) boundaries are active, and so are \(w_{0,m} \) (left) and \(w_{L,m} \) (right).
If we enumerate our grid-points in the following \textit{(Lexicographical)} way

\begin{center}
\begin{tikzpicture}
\draw[thick] (0,0) -- (6,0); \draw[thick] (0,1) -- (6,1); \draw[thick] (0,2) -- (6,2); \draw[thick] (0,3) -- (6,3); \draw[thick] (0,4) -- (6,4); \draw[thick] (0,5) -- (6,5); \draw[thick] (0,6) -- (6,6); \draw[thick] (0,7) -- (6,7); \draw[thick] (0,8) -- (6,8); \draw[thick] (0,9) -- (6,9); \draw[thick] (0,10) -- (6,10); \draw[thick] (0,11) -- (6,11); \draw[thick] (0,12) -- (6,12); \draw[thick] (0,13) -- (6,13); \draw[thick] (0,14) -- (6,14); \draw[thick] (0,15) -- (6,15); \draw[thick] (0,16) -- (6,16); \draw[thick] (0,17) -- (6,17); \draw[thick] (0,18) -- (6,18); \draw[thick] (0,19) -- (6,19); \draw[thick] (0,20) -- (6,20); \draw[thick] (0,21) -- (6,21); \draw[thick] (0,22) -- (6,22); \draw[thick] (0,23) -- (6,23); \draw[thick] (0,24) -- (6,24); \draw[thick] (0,25) -- (6,25); \draw[thick] (0,26) -- (6,26); \draw[thick] (0,27) -- (6,27); \draw[thick] (0,28) -- (6,28); \draw[thick] (0,29) -- (6,29); \end{tikzpicture}
\end{center}

then we get \((M - 1)\) tridiagonal systems (one for each “row”), with \((L - 1)\) unknowns.
We also need the missing boundary conditions for w

$$w_{0,m} = \left[\frac{b_2 \mu_y}{4} \right] \beta_{0,m-1}^n + \left[\frac{1 - b_2 \mu_y}{2} \right] \beta_{0,m}^n + \left[\frac{b_2 \mu_y}{4} \right] \beta_{0,m+1}^n$$

$$- \left[\frac{b_2 \mu_y}{4} \right] \beta_{0,m-1}^{n+1} + \left[\frac{1 + b_2 \mu_y}{2} \right] \beta_{0,m}^{n+1} - \left[\frac{b_2 \mu_y}{4} \right] \beta_{0,m+1}^{n+1}.$$

$$w_{L,m} = \left[\frac{b_2 \mu_y}{4} \right] \beta_{L,m-1}^n + \left[\frac{1 - b_2 \mu_y}{2} \right] \beta_{L,m}^n + \left[\frac{b_2 \mu_y}{4} \right] \beta_{L,m+1}^n$$

$$- \left[\frac{b_2 \mu_y}{4} \right] \beta_{L,m-1}^{n+1} + \left[\frac{1 + b_2 \mu_y}{2} \right] \beta_{L,m}^{n+1} - \left[\frac{b_2 \mu_y}{4} \right] \beta_{L,m+1}^{n+1}.$$

For $m = 1, \ldots, M - 1$ ($m = 0$, and $m = M$ are not needed).
The second half-stage is given by

\[-\left[\frac{b_2 \mu_y}{2}\right] v_{\ell,m-1} + \left[1 + b_2 \mu_y\right] v_{\ell,m} - \left[\frac{b_2 \mu_y}{2}\right] v_{\ell,m+1}\]

\[= \left[\frac{b_1 \mu_x}{2}\right] w_{\ell-1,m} + \left[1 - b_1 \mu_x\right] w_{\ell,m} + \left[\frac{b_1 \mu_x}{2}\right] - w_{\ell+1,m},\]

for \(\ell = 1, \ldots, L - 1, \) and \(m = 1, \ldots, M - 1. \)

With the correct grid-ordering, we get \((L - 1)\) tridiagonal systems of size \((M - 1)\).

Boundary conditions for \(v \) are given at time-level \((n + 1)\).
Figure: “Active” points in the second half-step [left], and the appropriate enumeration order of the grid-points [right].
The Mitchell-Fairweather Scheme

In Strikwerda (pp. 180–181), there is a discussion of the Mitchell-Fairweather scheme, which is an ADI scheme which is second order in time, and fourth order accurate in space:

\[
\begin{align*}
\left[1 - \frac{1}{2} \left(b_{1}\mu_x - \frac{1}{6} \right) h^2 \delta^2_x \right] v^{n+1/2} &= \left[1 + \frac{1}{2} \left(b_{2}\mu_y + \frac{1}{6} \right) h^2 \delta^2_y \right] v^n, \\
\left[1 - \frac{1}{2} \left(b_{2}\mu_y - \frac{1}{6} \right) h^2 \delta^2_y \right] v^{n+1} &= \left[1 + \frac{1}{2} \left(b_{1}\mu_x + \frac{1}{6} \right) h^2 \delta^2_x \right] v^{n+1/2},
\end{align*}
\]

with Dirichlet boundary conditions for \(v^{n+1/2} \)

\[
v^{n+1/2} = \frac{1}{2b_{1}\mu_x} \left\{ \left(b_{1}\mu_x + \frac{1}{6} \right) \left[1 + \frac{1}{2} \left(b_{2}\mu_y + \frac{1}{6} \right) h^2 \delta^2_y \right] \beta^n \\
+ \left(b_{1}\mu_x - \frac{1}{6} \right) \left[1 - \frac{1}{2} \left(b_{2}\mu_y - \frac{1}{6} \right) h^2 \delta^2_y \right] \beta^{n+1} \right\}.
\]
ADI with Mixed \(u_{xy} \) Derivative Terms

It has been shown that no ADI scheme involving only the time levels \(n + 1 \) and \(n \) can be second-order accurate when \(b_{12} \neq 0 \) (i.e. when we have mixed derivatives).

A second-order accurate modification of the Peaceman-Rachford scheme is given by

\[
\begin{align*}
\left[1 - \frac{k}{2} b_{11} \delta_x^2 \right] v^{n+1/2} &= \left[1 + \frac{k}{2} b_{22} \delta_y^2 \right] v^n + k b_{12} \delta_{0x} \delta_{0y} \left[\frac{3}{2} v^n - \frac{1}{2} v^{n-1} \right], \\
\left[1 - \frac{k}{2} b_{22} \delta_y^2 \right] v^{n+1} &= \left[1 + \frac{k}{2} b_{11} \delta_x^2 \right] v^{n+1/2} + k b_{12} \delta_{0x} \delta_{0y} \left[\frac{3}{2} v^n - \frac{1}{2} v^{n-1} \right],
\end{align*}
\]

with Dirichlet boundary conditions for \(v^{n+1/2} \)

\[
v^{n+1/2} = \frac{1}{2} \left(1 + \frac{k}{2} b_{22} \delta_y^2 \right) \beta^n + \frac{1}{2} \left(1 - \frac{k}{2} b_{22} \delta_y^2 \right) \beta^{n+1}.
\]